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Multiple Sequence Alignment (MSA): 
a scientific grand challenge1

S1 = -AGGCTATCACCTGACCTCCA
S2 = TAG-CTATCAC--GACCGC--
S3 = TAG-CT-------GACCGC--
…
Sn = -------TCAC--GACCGACA

S1 = AGGCTATCACCTGACCTCCA
S2 = TAGCTATCACGACCGC
S3 = TAGCTGACCGC
…

Sn = TCACGACCGACA

Novel techniques needed for scalability and accuracy
NP-hard problems and large datasets
Current methods do not provide good accuracy
Few methods can analyze even moderately large datasets 

Many important applications besides phylogenetic estimation

1 Frontiers in Massive Data Analysis, National Academies Press, 2013



What are MSAs used for?

• Inferring evolutionary histories
• Predicting biomolecular (RNA, protein) structure
• Genome annotation and assembly
• And others



Phylogenomic pipeline

• Select taxon set and markers

• Gather and screen sequence data, possibly identify orthologs

• Compute multiple sequence alignments for each locus, and construct gene 
trees

• Compute species tree or network:

– Combine the estimated gene trees, OR

– Estimate a tree from a concatenation of the multiple sequence 
alignments 

• Get statistical support on each branch (e.g., bootstrapping)

• Estimate dates on the nodes of the phylogeny

• Use species tree with branch support and dates to understand biology
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1kp: Thousand Transcriptome Project

l Plant Tree of Life based on transcriptomes of ~1200 species
l More than 13,000 gene families (most not single copy)
Gene Tree Incongruence
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Challenge: 
Alignment of datasets with > 100,000 sequences 
with many very short sequences

Plus many many other people…



Outline

• Part I: Basic concepts and techniques
– Computing pairwise alignments
– Computing multiple sequence alignments

• Part II: Techniques for Large-scale MSA
– Divide-and-conquer MSA
– “Two-phase” (compute backbone, then add 

remaining sequences)
• Part III: Adding to alignments
• Part IV: Discussion and Future Work



Part I: Basic Concepts

• Homology
• Indels (insertions and deletions)
• True pairwise alignment
• Edit transformation
• Global vs local alignment
• Transitivity



…ACGGTGCAGTTACCA…

MutationDeletion

…ACCAGTCACCA…

Indels (insertions and deletions)

Homology: two letters (nucleotides or amino-acids) that are 
related by descent from a common ancestor



…ACGGTGCAGTTACC-A…

…AC----CAGTCACCTA…

The true pairwise alignment
– Reflects historical substitution, insertion, and deletion 

events 
– Letters (nucleotides or amino acids) in the same column 

are supposed to be homologs

…ACGGTGCAGTTACCA…

SubstitutionDeletion

…ACCAGTCACCTA…

Insertion



…ACGGTGCAGTTACC-A…

…AC----CAGTCACCTA…

…-C----CAGT------…

The true multiple alignment
– Reflects historical substitution, insertion, and deletion 

events
– Defined using transitive closure of pairwise alignments 

defined on the edges of the true tree 

…ACGGTGCAGTTACCA…

SubstitutionDeletion

…ACCAGTCACCTA…

Insertion

CCAGT
Then two 
deletions 
(one at front, 
long one at end) 



Pairwise alignment

• Global alignment: finding the lowest-cost edit 
transformation, solved using Needleman-Wunsch 
(dynamic programming)

• Polynomial time!
• Allows for variations in cost function and similarity 

scores, still polynomial time



Examples
For each pair of sequences, what is the best global pairwise 
alignment? 

Suppose that indels and substitutions each have cost 1.

• S1 = ACTAG
• S2 = GCTAG

• S3 = ACTAG
• S4 = TTACTAGGA

• S5 = TTAAGAGAACTATGGACCTA
• S6 = GAGAAGGTAGGTTTAAGTAAGCCATTA





Needleman-Wunsch 

From Huson et al., (2010)



Pairwise alignment

• Global alignment: finding the lowest-cost edit 
transformation, solved using Needleman-Wunsch 
(dynamic programming)

• Local alignment: finding the two substrings of highest 
similarity, solved using Smith-Waterman (also 
dynamic programming)

• Polynomial time!
• Both allow for variations in cost function and 

similarity scores, still polynomial time



Multiple Sequence Alignment

• Optimization problems extend pairwise alignment
– Minimizing sum-of-pairs costs
– Minimizing tree length
– Likelihood-based approaches (e.g., Bayesian estimation) 

• Optimization problems are NP-hard 
• Bayesian estimation is even less scalable



Standard approaches?  

• Standard methods use a variety of techniques, 
such as extending pairwise alignments with:
– Star alignment
– Progressive alignment
– Ensemble methods, including “Consistency”  
– Supervised learning



Simulation Studies

S1 S2

S3S4

S1 = -AGGCTATCACCTGACCTCCA
S2 = TAG-CTATCAC--GACCGC--
S3 = TAG-CT-------GACCGC--
S4 = -------TCAC--GACCGACA

S1 = AGGCTATCACCTGACCTCCA
S2 = TAGCTATCACGACCGC
S3 = TAGCTGACCGC
S4 = TCACGACCGACA

S1 = -AGGCTATCACCTGACCTCCA
S2 = TAG-CTATCAC--GACCGC--
S3 = TAG-C--T-----GACCGC--
S4 = T---C-A-CGACCGA----CA

Compare

True tree and 
alignment

S1 S4

S3S2

Estimated tree and 
alignment

Unaligned 
Sequences



MSA+Tree estimation
Alignment methods
• Clustal
• POY (and POY*)
• Probcons (and Probtree)
• Probalign
• MAFFT
• Muscle
• Di-align
• T-Coffee 
• Prank (PNAS 2005, Science 2008)
• Opal (ISMB and Bioinf. 2007)
• FSA (PLoS Comp. Bio. 2009)
• Infernal (Bioinf. 2009)
• Etc.

Phylogeny methods
• Bayesian MCMC 
• Maximum parsimony 
• Maximum likelihood 
• Neighbor joining
• FastME
• UPGMA
• Quartet puzzling
• Etc.

RAxML: heuristic for large-scale ML optimization



1000-taxon models, ordered by difficulty (Liu et al., 2009)



What makes for an “easy” MSA?

• MSA is easy when the input is a small set of 
very similar sequences
– All nearly the same length
– Very few substitutions
– Very few “indels”

• But large datasets are difficult, even when 
they are otherwise relatively “easy”



Part II: Techniques for Large-Scale MSA



Large-scale MSA 

Challenges
• High evolutionary rates
• Sequence length heterogeneity (e.g., fragments)
• Very long sequences



Techniques for de novo MSA

• Divide-and-conquer
– Divide dataset (sequences) into disjoint subsets, 

align subsets, merge subset alignments 

• “Two-phase” (mainly for datasets with 
sequence length heterogeneity)
– Construct “backbone alignment” for the full-

length sequences
– Add remaining sequences into the backbone 

alignment
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Divide-and-conquer

• Divide-and-conquer “meta-methods” for large 
numbers of sequences and high evolutionary 
rates:  
– SATé, PASTA, and MAGUS



Re-aligning on a tree
A

B D

C

Merge 
sub-alignments

Estimate ML 
tree on merged 

alignment

Decompose 
dataset

A B

C D

Align subsets

A B

C D

ABCD



SATé, PASTA, and MAGUS Algorithms

Estimate ML tree on new 
alignment

Tree

Obtain initial alignment and 
estimated ML tree

Use tree to compute 
new alignment

Alignment

Repeat until termination condition, and

return the alignment/tree pair with the best ML score



1000-taxon models, ordered by difficulty (Liu et al., 2009)





Improvement over time

• SATé-1 (Science 2009): up to about 8,000
• SATé-2 (Syst Biol 2012): up to 50,000
• PASTA (J Comp Biol 2014): up to 1,000,000
• MAGUS (Bioinformatics 2021): more accurate 

than PASTA (and one iteration suffices) – up to 
1,000,000 

Each method improved on the previous with 
respect to MSA and Tree accuracy, speed, and 
scalability to large datasets



SATé-II vs PASTA vs MAGUS

• Decomposition: the same technique (delete 
centroid edges)

• Subset alignments: the same (all computed 
MAFFT-linsi alignments)

• Merging:
– SATé-II uses a guide tree to merge the subset 

alignments up the tree
– PASTA aligns all “adjacent pairs” of alignments, and 

then finishes with transitivity
– MAGUS aligns all subset alignments *at once* (using a 

complex pipeline involving Markov Clustering)



Department of Computer Science GRAINGER ENGINEERING

MAGUS
MAGUS: More Accurate Alignments than PASTA



GRAINGER ENGINEERING

Recursive MAGUS

MAGUS: excellent on protein benchmarks too



Summary for Divide-and-Conquer

• Can be used with any base MSA method (we 
showed results with MAFFT-linsi, but 
improvements also found for other methods, 
including BAli-Phy)

• Iteration can help
• Merging alignments “all at once” promising; 

related to John Kececioglu’s “Maximum 
Weight Trace” problem



Sequence Length Heterogeneity

• The next challenge is sequence length 
heterogeneity (especially fragmentary 
sequences)
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1KP dataset: more than 
100,000 p450 amino-acid
sequences, many fragmentary

All standard multiple
sequence alignment
methods we tested 
performed poorly on
datasets with fragments.



Solution: Two-phase approach
• Phase 1: Select a collection of “full-length” sequences, and 

compute a “backbone” alignment on them.
• Phase 2: Add the remaining sequences into the backbone 

alignment.

Note: Each stage matters!
• Depends on which sequences are in the backbone, and how 

the backbone alignment is computed (but can use expensive 
methods)

• Depends on how the remaining sequences are added to the 
backbone (can use “local alignment” techniques)



UPP
UPP = “Ultra-large multiple sequence alignment using 
Phylogeny-aware Profiles”

Nguyen, Mirarab, and Warnow. Genome Biology, 2014.

Purpose: highly accurate large-scale multiple sequence 
alignments, even in the presence of fragmentary sequences.



UPP
UPP = “Ultra-large multiple sequence alignment using 
Phylogeny-aware Profiles”

Nguyen, Mirarab, and Warnow. Genome Biology, 2015

Purpose: highly accurate large-scale multiple sequence 
alignments, even in the presence of fragmentary sequences.

Uses an ensemble of HMMs 



UPP (Nguyen et al. 2015)

The Ensemble of Hidden Markov Models is a “model” for the backbone alignment.
The HMMs are built on subset alignments, may not be clades in the backbone tree.
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Figure S32: Alignment and tree error of PASTA and UPP on the fragmentary 1000M2
datasets.

80

Performance on fragmentary datasets of the 1000M2 model condition

UPP vs. PASTA: impact of fragmentation

Under high rates of evolution,
PASTA is badly impacted
by fragmentary sequences (the 
same is true for other methods).

Under low rates of evolution,
PASTA can still be highly accurate
(data not shown).

UPP continues to have good
accuracy even on datasets
with many fragments under
all rates of evolution.



Other two-phase methods
These methods start the same as UPP (extract backbone alignment, build 
ensemble of HMMs on backbone), but then do things differently to add the 
query sequences to the backbone

• WITCH (Chengze Shen et al, J. Comp Biol 2022.) and WITCH-ng (Baqiao Liu 
and T. Warnow, Bioinformatics Advances 2022.): weights the HMMs, 
computes extended alignment for each HMM, merges the extended 
alignments using “consensus alignment” technique

• HMMerge (Minhyuk Park and T. Warnow, Bioinformatics Advances.): 
weights the HMMs, combines them into new Hidden Markov Model (not 
profile HMM), and uses that new HMM to add query sequences

All are more accurate than UPP 



Part III: Adding to MSAs
Problem:
• Input:  MSA A and set Q of additional (unaligned) sequences
• Output: add the sequences in Q to A (without changing A)

Applications:
• Two-phase methods (like UPP, WITCH, etc)
• Taxon identification (e.g., in metagenomics)
• Updating existing alignment



Methods for updating MSAs

• HMM-based methods: UPP-add, WITCH-add, 
WITCH-ng-add, HMMerge-add

• MAFFT-add (and its most accurate setting, 
MAFFT-linsi-add)

• EMMA (Chengze Shen et al., WABI 2023): 
– Extends the ideas in UPP-add, but follows by running 

MAFFT-linsi-add. (New version under development)



Comparison of EMMA-add, WITCH-ng-add, and MAFFT-linsi-add:
The benefit of not using HMMs to align query sequences

SPFN	of	different	methods	(fraction	of	missing	true	pairwise	homologies)

Dataset:	1000M1	with	a	high	rate	of	evolution;		all	sequences	are	full-length
Backbone:	250	randomly	selected	sequences	from	full	set.



Part IV: Discussion



Progress in MSA has been made

• MSA is challenging, but algorithmic 
techniques can improve accuracy and 
scalability:
– Dataset size can be addressed using good divide-

and-conquer approaches.
– Heterogeneity in sequence length can be 

addressed using “local alignment” approaches, 
such as profile HMMs, with ensembles of profile 
HMMs providing improved accuracy.



Algorithmic challenges

• How can we assess alignment uncertainty and 
use it in downstream analyses?  

• Can we use a set of MSAs to advantage, instead 
of a single MSA? For example, can we develop 
effective and efficient “ensemble” methods?

• What are the best ways to merge disjoint 
alignments?

• How can we efficiently perform statistical 
alignment?



Summary

• Multiple sequence alignment (MSA) has large 
downstream consequences in bioinformatics 
analyses.

• MSA is far from solved – esp. (but not only) on 
large datasets with high rates of evolution, 
sequence length heterogeneity, and streaming 
data.

• New techniques show promise 
• Not discussed: multiple whole genome 

alignment, MSA with rearrangements, statistical 
alignment



Acknowledgments

PASTA and UPP: Siavash Mirarab and Nam-phuong Nguyen
MAGUS: Vlad Smirnov
WITCH: Chengze Shen and Minhyuk Park
EMMA: Chengze Shen and Baqiao Liu

NSF grants: 1458652 and 2006069 
Grainger Foundation (at UIUC)
TACC,  Blue Waters, and UIUC campus cluster

PASTA, UPP, SEPP, and TIPP are  available on github at https://github.com/smirarab/
PASTA+BAli-Phy at http://github.com/MGNute/pasta
MAGUS: at https://github.com/vlasmirnov/MAGUS
WITCH: at https://github.com/c5shen/WITCH
WITCH-ng at https://github.com/RuneBlaze/WITCH-NG. 
EMMA at https://github.com/c5shen/EMMA

Papers available at http://tandy.cs.illinois.edu/papers.html

https://github.com/smirarab/
http://github.com/MGNute/pasta
https://github.com/vlasmirnov/MAGUS
https://github.com/c5shen/WITCH
https://github.com/RuneBlaze/WITCH-NG
https://github.com/c5shen/EMMA
http://tandy.cs.illinois.edu/papers.html


Part IV: Statistical Alignment

• Since MSA and tree estimation are both about 
evolution (recognition of homologies due to 
evolution), can we co-estimate them together, 
using a statistical model of evolution?

• BAli-Phy (Redelings and Suchard) is the main 
method for this problem.



Systematic Biology, Volume 68, Issue 3, May 2019, Pages 396–411, https://doi.org/10.1093/sysbio/syy068

BAli-Phy is best on small simulated protein datasets!

BAli-Phy is best!



Systematic Biology, Volume 68, Issue 3, May 2019, Pages 396–411, https://doi.org/10.1093/sysbio/syy068

BAli-Phy not so great on on 1192 small biological protein datasets

T-Coffee and PROMALS 
are best!

BAli-Phy good for 
Modeler score, but not 
so good for SP-Score 
(e.g., MAFFT better)



Observations

• Simulated data: Bali-Phy is the best!
• Protein benchmarks: BAli-Phy in middle

– Good for Modeler score (so low false positives)
– Not good for SP-score (so high false negatives)

• BAli-Phy under-aligns on biological datasets, 
but not on simulated datasets



Most likely not an issue of failure of the MCMC analyses 
to converge (48 hours, 32 processors, < 30 sequences). 

Possible explanations:
1. Model misspecification (i.e., BAli-Phy model not 

appropriate)
2. Structural alignments and evolutionary alignments 

different
3. The structural alignments are not correct  
All these explanations are likely true, but the relative 
contributions are unknown. 

What is going on? 



Other questions

• Large datasets can produce extremely large 
alignments.   How should we handle this?

• Can we predict impact of alignment error on 
the downstream analysis?

• What are the differences in desirable 
properties for alignments for different 
downstream purposes (e.g., protein structure 
prediction vs. tree estimation)?



Scientific challenges:

• Ultra-large multiple-sequence alignment
• Gene tree estimation
• Metagenomic classification
• Alignment-free phylogeny estimation
• Supertree estimation
• Estimating species trees from many gene trees
• Genome rearrangement phylogeny
• Reticulate evolution
• Visualization of large trees and alignments
• Data mining techniques to explore multiple optima
• Theoretical guarantees under Markov models of evolution

Techniques: applied probability theory, graph theory, supercomputing, and heuristics

Testing: simulations and real data

The Tree of Life: Multiple Challenges
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