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Abstract

In 2006, Warnow, Evans, Ringe, and Nakhleh proposed a stochastic
model (hereafter, the WERN 2006 model) of multi-state linguistic char-
acter evolution that allowed for homoplasy and borrowing. They proved
that if there is no borrowing between languages and homoplastic states
are known in advance, then the phylogenetic tree of a set of languages is
statistically identifiable under this model, and they presented statistically
consistent methods for estimating these phylogenetic trees. However, they
left open the question of whether a phylogenetic network – which would
explicitly model borrowing between languages that are in contact – can be
estimated under the model of character evolution. Here, we establish that
under some mild additional constraints on the WERN 2006 model, the
phylogenetic network topology is statistically identifiable, and we present
algorithms to infer the phylogenetic network. We discuss the ramifications
for linguistic phylogenetic network estimation in practice, and suggest di-
rections for future research.
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1 Introduction

The evolutionary history of a collection of languages is fundamental to many
questions in historical linguistics, including the reconstruction of proto-languages,
estimates of dates for diversification of languages, and determination of the geo-
graphical and temporal origins of Indo-Europeans [13, 16, 6]. These phylogenetic
trees can be estimated from linguistic characters, including morphological, ty-
pological, phonological, and lexical characters [8, 24, 4, 11, 12]. There are
many methods for estimating phylogenetic trees, including parsimony criteria,
distance-based methods, and likelihood-based techniques based on parametric
models of trait evolution, and the relative strengths of these methods and how
they depend on the properties of the data have been explored using both real-
world and simulated datasets [27, 26, 20, 2].

Yet it is well known that languages do not always evolve purely via descent,
with “borrowing” between languages requiring an extension of the Stammbaum
model to a model that explicitly acknowledges exchange between languages
[22, 1, 3, 23, 28]. One graphical model that has been used explicitly for lan-
guage evolution is composed of an underlying genetic tree on top of which there
are additional contact edges allowing for borrowing between communities that
are in contact [22, 3]. This type of graphical model has been studied in the
computational phylogenetics literature, where it is referred to as a “tree-based
phylogenetic network” [9]. The estimation of phylogenetic networks is very
challenging, both for statistical reasons (i.e., potential non-identifiability) and
computational reasons (see discussion in [5]); although tree-based phylogenetic
networks are a restricted subclass of phylogenetic networks, there are still sub-
stantial challenges in estimating these phylogenetic networks, as discussed in
[10, 18].

As difficult as it is to estimate a tree-based phylogenetic network, the es-
timation of a dialect continuum represents an even larger challenge, and the
interpretation of a dialect continuum is also difficult [24, 17]. However, at least
for language families such as Indo-European, tree-based phylogenetic networks
may suffice [22], and hence are the focus of this paper.

The inference of phylogenetic networks depends on the graphical model (i.e.,
tree, tree-based phylogenetic network, etc.) and also on the stochastic model of
character evolution. Examples of relevant character evolution models include
the Stochastic Dollo with Lateral Transfer model in [19], which models pres-
ence/absence of cognate classes (i.e., binary characters) with borrowing, and a
model for multi-state character evolution in [31], which also allows for borrow-
ing. When the phylogenetic network is tree-based, we may seek to estimate just
the genetic tree (i.e., the tree in the tree-based phylogenetic network) or we can
seek to estimate the entire topology of the phylogenetic network itself, which
would include the location of the contact edges.

In this study, we address the challenge of estimating the phylogenetic net-
work topology under an extension of the model proposed in [31], which we will
refer to as the WERN 2006 model to acknowledge the four authors of the model
(Warnow, Evans, Ringe, and Nakhleh). In the WERN 2006 model, the graphical
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model is a tree-based phylogenetic network so that the underlying genetic tree
is rooted and binary and the non-tree edges represent contact between language
groups and are bidirectional. Characters can evolve down the underlying genetic
tree or can use one or more contact edges. However, if a character evolves using
a contact edge so that a state is borrowed into a lineage via that contact edge,
then the borrowed state replaces the state already in the lineage. Thus, every
character evolves down some rooted tree contained within the rooted network.
The WERN 2006 model includes numeric parameters that govern the probabil-
ity of change, and these parameters depend on the type of character, which may
be phonological, morphological, or lexical. While the phonological characters
have two states, 0 and 1, indicating presence-absence of a sound change and 0
indicating the ancestral state, the other characters can exhibit any number of
states on the languages, and so are called “multi-state” characters. The WERN
2006 model allows for homoplasy in character evolution (i.e., parallel evolution
or back-mutation, see Figure 2), provided that the homoplastic character states
are known (in other words, we know which character states can arise as a result
of either parallel evolution or back-mutation).
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Figure 1: Panel (a) shows a genetic tree with leafset {A,B,C,D,E, F}. Panel
(b) shows the tree-based phylogenetic network formed by adding two contact
edges to the genetic tree. Panel (c) shows an unrooted version of the rooted
network in (b). Panel (d) shows all four rooted trees contained inside the rooted
network from (b), with the first being the genetic tree from (a). Panel (e) shows
the unrooted versions of the rooted trees in (d). Panel (f) shows three quartet
trees; q1 is displayed in T1 and T2 but not in T3 or T4, q2 is displayed in T3

and T4 but not in trees T1 or T2, and q3 is not displayed in any of these trees.
Because q1 and q2 are each displayed by at least one tree in the network, the
set Q(Nr) will contain both q1 and q2, but will not contain q3.

Our WERN 2023 model modifies the WERN 2006 model as follows. First,
under the WERN 2023 model, we allow for any number of homoplastic states,
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Figure 2: Character evolution on a rooted tree. Panel (a) shows evolution
without any homoplasy, panel (b) shows homoplasy due to parallel evolution
(i.e., two 0 → 1 transitions), and panel (c) shows homoplasy due to back-
mutation (note the 1 → 0 transition, where 0 is the ancestral state).

as long as these states are known in advance. We require that the probability of
homoplasy for the root state be strictly less than 1 for all non-binary characters.
We also allow for some characters to not exhibit any homoplasy, but the proba-
bility of a character being homoplasy-free is a parameter that can be any value
x with 0 ≤ x ≤ 1. The special case where 0 < x means that the probability of
a random character being homoplasy-free is strictly positive; when this special
case holds, we will be able to use this information fruitfully.

In this article, we show that we can estimate the unrooted topology of any
WERN 2023 model phylogenetic network in a statistically consistent manner,
provided that the cycles in the phylogenetic network are vertex-disjoint (which
will ensure that the phylogenetic network is level-1 [7, 15]) and each cycle con-
tains at least six vertices. The key to constructing these unrooted topologies is
the inference of the unrooted quartet trees displayed by trees contained within
the phylogenetic network, and these can be easily constructed from the fact that
we have identifiable homoplasy. Finally, we also show that if homoplasy-free
characters have positive probability, then we can identify the rooted topology
of such a phylogenetic network.

The rest of the article is organized as follows. In Section 2, we give a high-
level description of the new model we propose, followed by an algorithm for
estimating the unrooted phylogenetic network and in Section 4 we present an
algorithm for rooting that unrooted topology. We state the theoretical guar-
antees for the algorithms, but leave the proofs in the appendix. In Section 5
we discuss the implications for the theoretical results we provide and the issues
when trying to estimate these phylogenetic networks in practice. We conclude
in Section 6 with a discussion of future work.

2 Mathematical Foundations

This section introduces the basic mathematical concepts and results, but we
direct the interested reader to [30] and [14] for additional context.
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2.1 Basic terminology

The tree-based rooted phylogenetic networks N we consider are formed by tak-
ing a rooted binary tree T (with root r) and adding edges to the tree (see Figure
1) so that no two cycles share any vertices. The edges within the rooted tree
are directed away from the root towards the leaves, but the additional edges
represent borrowing and so are bi-directional. Each cycle in the rooted network
thus has one bidirectional edge and the two nodes at the endpoint of this edge
are referred to as the “bottom nodes” of the cycle. Note that the bottom nodes
have indegree two and all other nodes have indegree one. To ensure identifiabil-
ity, throughout this article we will constrain the phylogenetic network topology
so that the smallest cycle in the unrooted network has at least six vertices.

We let L denote the set of languages for which we wish to construct the true
phylogenetic network, N . We use linguistic characters to estimate this network,
and let α(L) denote the state of language L for character α. Recall that we
say that a character exhibits homoplasy on a tree T if it is not possible to
assign labels to the internal vertices so that the character evolves without back
mutation or parallel evolution (Figure 2). Furthermore, every rooted network
defines a set of rooted trees (Figure 1) and every character evolves down one of
the trees within the network. We say that a character evolves without homoplasy
on a network if it is homoplasy-free on at least one of the trees inside the
network; conversely, a character exhibits homoplasy on a phylogenetic network
if it exhibits homoplasy on every tree within the network.

We can also consider the rooted trees in the network as unrooted trees, in
which case they can be used to define quartet trees. Thus, we will say that the
unrooted tree T displays a quartet tree uv|xy if T has an edge e that separates
leaves u, v from leaves x, y (see Figure 1). The set of all quartet trees displayed
by any tree contained inside the network N is referred to as Q(Nr). Note that
this is not the same as the set of all quartet trees displayed by the unrooted
version of the network N , which is denoted by Q(N) in [10].

3 Constructing the unrooted network topology

In this paper, the phylogenetic network N consists of an underlying genetic tree
on top of which there are borrowing edges, the cycles that are created have at
least six vertices and are vertex disjoint, and we assume that the characters
evolve down N under the WERN 2023 model. Here we describe a method that
is based on computing quartet trees for constructing the unrooted topology of
the phylogenetic network.

3.1 Quartet Tree-Calculator (QTC): Constructing Q(Nr)

We begin with a description of the QTC method (Quartet Tree Calculator) for
computing quartet trees. Recall that we assume we know which of the states
are homoplastic. Let α be a character and assume states 1 and 2 are both
non-homoplastic. Now suppose that we have four languages a, b, c, d such that
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α(a) = α(b) = 1 and α(c) = α(d) = 2. Then, we add quartet tree ab|cd to our
estimate of Q(Nr). We compute these quartet trees for every character α in
turn, thus defining a set of quartet trees that we will refer to as Q, the output
of QTC.

Theorem 1. Let N be a rooted phylogenetic network, and let characters evolve
down N under the WERN 2023 model, and let Q be the output of QTC. Then
every quartet tree in Q will be in Q(Nr). Furthermore, as the number of charac-
ters increase, with probability converging to 1, every quartet tree in Q(Nr) will
appear in Q. Thus, QTC is a statistically consistent estimator of Q(Nr).

The proof of this theorem is given in the appendix.

3.2 Quartet-Based Topology Estimator

We now present QBTE (Quartet-Based Topology Estimator), our method for
constructing an unrooted network topology, using the quartet trees calculated
using QTC.

By Theorem 1, QTC will return Q(Nr) with probability going to 1 as the
number of characters increases. Hence, to estimate the unrooted topology of
a phylogenetic network N , it suffices to use a method that can take unrooted
quartet trees as input, provided that it is guaranteed to return the unrooted
topology of N when given Q(Nr).

A natural candidate is the algorithm from Section 7.1 of [10], which correctly
constructs the unrooted topology of level-1 networks N given Q(N), and does
so in O(n4) time, where n is the number of leaves in the network N . However,
Q(Nr) is in general a proper subset ofQ(N), and so we cannot use this algorithm
as is. Therefore, we have modified the algorithm, as we describe in the next
section.

3.2.1 Gambette et al.’s algorithm

The algorithm from [10], which we refer to as “Gambette’s algorithm”, makes
the assumption that the input is all of Q(N), where N is a level-1 network.
Recall that Q(N) is all quartet trees displayed by the unrooted network N , and
so contains more than just Q(Nr). Here we briefly describe the approach, see
[10] for full details.

The algorithm has two steps. In Step 1, an unrooted tree, referred to as the
“SN-tree”, is computed from the quartet trees. The SN-tree is the maximally
resolved tree that has the property that all quartet trees in the SN-tree are
in the input set of quartet trees, and no resolved quartet tree in the SN-tree
conflicts with an input quartet tree. The SN-tree is unique for a given dense set
of quartet trees (i.e., a set that has at least one tree for every four leaves), and
can be constructed in polynomial time.

In Step 2, the polytomies in the SN-tree are used to construct cycles. A
polytomy with degree k will produce a cycle of k nodes. Moreover, each neighbor
of the polytomy defines a set of leaves in the SN-tree, and any node in that set
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can be used to label the corresponding node in the cycle. Gambette et al. pick
one such leaf for every node in the cycle, and thus will construct a cycle (to
replace the polytomy) with labels drawn from the leaves. They then use the
quartet trees to determine the order of the labels of the nodes in the cycle (by
determining which pairs of labels are adjacent). This allows them to replace
each polytomy by a cycle in the correct way, and hook up the cycles to the rest
of the graph.

Here Gambette’s algorithm explicitly assumes that all quartets in Q(N) are
in the input, and without this assumption the algorithm can definitely fail to
be correct.

3.2.2 Our modification to Gambette’s algorithm

Although we can use Step 1 without modification (because it only requires that
the input set of quartet trees be dense), we cannot use Step 2, since Q(Nr) is
not all of Q(N) in general. However, we can easily modify this algorithm so
that it works correctly with just the quartets from Q(Nr), provided that the
minimum cycle length of any cycle is six.

The proof goes as follows: if some set of four leaves a, b, c, d (that are labelling
different nodes for a single cycle) has only one tree, then (by Lemma 1, below)
none of the bottom nodes in the cycle can be labelled by any of these leaves.
Therefore, if every cycle has at least six nodes, then we can determine which of
the nodes are the bottom nodes, since every other node is in a set of four leaves
that has only one tree. As a side remark, we note that there are examples of
5-cycles where we cannot figure out what the two bottom nodes are!

Furthermore, once we know the bottom nodes in the cycle, we can remove
those two bottom nodes, and since the cycle has length at least six, there are
at least four remaining nodes. The set of quartet trees on the remaining nodes
are compatible and define a tree, and in fact define a path. From this path,
the correct way of adding in the bottom nodes (one at each end of the path) is
trivial. This allows us to completely determine the expansion of the polytomy
into a cycle, with a unique bottom pair and bidirectional edge.

Lemma 1. Let a, b, c, d be a set of four leaves that are the labels for distinct
nodes in a common cycle. Then Q(Nr) has at exactly two quartet trees on
a, b, c, d if and only if at least one of these leaves labels a bottom node in the
cycle.

Proof. The proof is by contradiction. If exactly one of the leaves labels a bottom
node in the cycle, then without loss of generality assume that d labels a bottom
node and has parent node z in the tree where z is not the other bottom node.
If we do not include the bidirectional edge, then without loss of generality, the
quartet tree is ab|cd, and the path in the quartet tree to c from d goes through z.
Now, consider the result of using the bidirectional edge by allowing d to inherit
from the other bottom node, and so deleting the edge (z, d). Now the quartet
tree on a, b, c, d is ad|bc.
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If two of the leaves label bottom nodes, then without loss of generality the
pair of bottom nodes is c, d. If we do not use the bidirectional edge, then the
quartet tree splits c and d and so we obtain ac|bd. If we use the bidirectional
edge in either direction, then we obtain ab|cd. Hence, if at least one of the two
leaves maps to a bottom node, then we obtain two quartet trees for the set
a, b, c, d.

Now for the other direction. If the four leaves are a, b, c, d and none of them
label bottom nodes, then the rooted subtree on a, b, c, d does not go through
the bottom nodes, and so is not impacted by including the bidirectional edge.
Hence, there is only one rooted quartet tree on a, b, c, d, and so only one unrooted
quartet tree on a, b, c, d.

3.2.3 QBTE: constructing the unrooted network topology

• Construct a set of quartet trees Q from the input M character dataset,
using the QTC method.

• Use our modification to the algorithm from [10] applied to Q to produce
the level-1 phylogenetic network for the quartet trees (see Section 3.2.2).

Theorem 2. The QBTE (Quartet-based topology estimation) method is sta-
tistically consistent for estimating the unrooted topology of the network N under
the WERN 2023 model when the rooted network N is a level-1 network where
all cycles have length at least six; furthermore, QBTE runs in polynomial time.

The proof is provided in the appendix.

4 Root-Network: Rooting an unrooted level-1
network

Here we present Root-Network, a method for rooting an unrooted level-1 phylo-
genetic network. Thus, the input to Root-Network will be the unrooted network
N and the set C0 of homoplasy-free phonological characters that exhibit both
states 0 and 1 at the leaves of N . If C0 is empty, we mark every edge as being
able to include the root, and otherwise we will process the edges to determine
which edges are feasible as root locations. At the end of processing all the
homoplasy-free phonological characters, any edge that remains is considered a
feasible root location.

When an edge e = (a, b) is used as the root location, it is subdivided through
the introduction of a new vertex ve so that the edge (a, b) is replaced by a path
of length two containing two edges: (a, ve) and (ve, b). The vertex ve is then the
root of the tree that is produced. Since these characters in C0 exhibit both states
and because 0 is the ancestral state, making e contain the root is equivalent to
saying that the state of ve is 0 for every character in C0. Hence, determining if
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ve can be the root for a given character α ∈ C0 is equivalent to saying that ve
can be labelled 0 without losing the homoplasy-free property for α.

Root-Network determines which edges cannot contain the root by processing
each character from C0 in turn. All edges are initially colored green, and any
edge that is discovered to not be able to contain the root for some character is
colored red. Under the assumptions of the algorithm, at the end of the algorithm
there will be at least one edge that is not colored red. The set of edges that are
green constitutes the set of edges that can contain the root, and will be returned
by the algorithm.

Handling cut edges. An edge whose deletion splits the network into two
components is referred to as a “cut edge.” If e is a cut-edge in the network, then
it is easy to tell if it should be red or green. Removing a cut edge e splits the
leafset into two sets, A and B. If any character exhibits state 1 on leaves in
both A and B, then e must be colored red, and otherwise it remains green. We
note that it is not possible for both 0 and 1 to appear on both sides of e, since
that is inconsistent with homoplasy-free evolution.

Processing edges in cycles All edges that are not cut edges are in cycles,
and because we are working with a level-1 network, any such edge is in exactly
one cycle. Here we show how to color the edges that are in cycles.

Let γ be a cycle in N , and assume it has k vertices. If we were to remove
all the edges in the cycle, the network would split into exactly k components,
since all cycles in N are vertex-disjoint.

Consider a single character in C0 and the states of this character at the
leaves in each of the components defined for γ. We split the components into
three sets: the set A(0) of components all of whose leaves have state 0, the set
A(1) of components all of whose leaves have state 1, and the set A(0, 1) the
set of components where at least one leaf has state 0 and at least one leaf has
state 1. Each vertex in γ belongs to exactly one component, and so we can
label the vertices of γ. according to the type of component they belong to (i.e.,
A(0), A(1), or A(0, 1)). We note that γ has at most one vertex labelled A(0, 1),
as otherwise the character cannot evolve without homoplasy. We use this to
determine if we should recolor the edges in γ as follows:

• If there is one vertex in γ labelled A(0, 1), then we color red any edge
incident with a vertex labelled A(1).

• If there are no vertices in γ labelled A(0, 1), then we color red any edge
both of whose endpoints are labelled A(1).

We perform this processing for every character, thus recoloring some edges
in γ red. Any edge that remains green throughout this process is returned by
Root-Network.

Theorem 3. Let N be the true unrooted level-1 network and let C0 denote the
set of homoplasy-free phonological characters that exhibit both 0 and 1 at the
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leaves of N . Rooting N on any edge returned by Root-Network will produce a
rooted network on which all characters in C0 can evolve without homoplasy, and
the edge containing the true location of the root will be in the output returned by
Root-Network. Furthermore, when given the unrooted topology of the true phy-
logenetic network as input, Root-Network is a statistically consistent estimator
of the root location under the assumption that the probability of homoplasy-free
phonological characters is positive.

The proof for this theorem is in the appendix. As a corollary, we have:

Corollary 1. The two-stage method of QBTE followed by Root-Network is
statistically consistent for estimating the rooted topology of the network N under
the WERN 2023 model, when the rooted network N is a level-1 network where all
cycles have length at least six and the probability of homoplasy-free phonological
characters is positive. Furthermore, this two-stage method runs in polynomial
time.

The proof follows easily from Theorems 2 and 3.

5 Practical considerations

We have described (1) QBTE, a method for constructing the unrooted topol-
ogy of a level-1 phylogenetic network from characters, and (2) Root-Network, a
method for rooting the resultant topology of the level-1 network. Each of these
methods has strong theoretical guarantees of statistical consistency. However,
these guarantees do not imply good or even reasonable accuracy on finite data,
such as can occur when the input is of insufficient quantity or does not evolve
under the assumptions of the theorems (e.g., down a level-1 network with known
homoplastic states).

Therefore, we ask: what are the consequences for estimating the network
from real-world languages, given these caveats? It is important to realize that
the guarantees for the QBTE algorithm depend on QTC correctly returning
the entire set of quartet trees Q(Nr). Moreover, QBTE also requires that the
characters evolve down a level-1 network and that every cycle has at least six
nodes. Even if the assumptions of the character evolution are valid, so that the
characters evolve down a level-1 phylogenetic network under the WERN 2023
model, some of the quartet trees in Q(Nr) may fail to appear in the output
from QTC, which will violate the requirements for QBTE to return a network.
Furthermore, if the assumptions regarding character evolution are invalid, then
some of the quartet trees produced by QTC may be incorrect (e.g., they may
be quartet trees not displayed in the phylogenetic network). Finally, it may be
that the characters evolve down a phylogenetic network that is more complex
than a level-1 network. In each of these cases, the most likely outcome is that
QBTE will fail to return anything.

Given the likely limitations of all three methods, we consider an alternative
approach. Instead of estimating the unrooted network topology directly, we
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propose to estimate the unrooted genetic tree first using quartet trees, then
(if desired) root the genetic tree and add in the contact edges. For example,
such an approach was used in [22] to produce a perfect phylogenetic network
for Indo-European.

Genetic Tree Estimation (heuristic):

• Step 1: Construct a set Q of quartet trees using the QTC technique.

• Step 2: Build a tree T for L from Q, using quartet amalgamation methods
that construct trees on the full leafset from sets of estimated quartet trees;
examples include ASTRAL [21], Quartets MaxCut [29], and Quartet FM
[25], which do not require that all the quartet trees be correct, nor that
the set contain a quartet tree for every four-leaf subset of the leafset.

Note that quartet amalgamation methods typically try to solve the Maximum
Quartet Support Supertree problem, where the output is a tree that agrees with
as many quartet trees in the input as possible. Because these quartet amalgama-
tion methods will return output trees even under adverse conditions (e.g., where
many quartet trees have errors), this type of approach is guaranteed to return
a tree T provided that the set Q of quartet trees produced by QTC contains
quartets that cover the leafset. This condition is much easier to achieve than
what is required for our level-1 network estimation method, QBTE. Moreover,
when the quartet amalgamation method uses polynomial time (which is true
of many such methods), this approach uses polynomial time. Hence there are
several empirical advantages to this approach over QBTE.

6 Future Work

This study suggests several directions for future work. For example, we recog-
nized practical limitations of QBTE, our proposed method for estimating the
unrooted phylogenetic network topology: although it is provably statistically
consistent under the WERN 2023 model, assuming that the phylogenetic net-
work is level-1, in practice it may fail to return any network topology for a
given input. Hence, it has limited practical use for analyzing real world data.
Therefore, the most important future work is to determine whether there are
methods that are provably statistically consistent for estimating the topologies
of these tree-based phylogenetic networks that are also of practical benefit. The
approach we suggested of estimating the genetic tree first is worthwhile, but we
do not yet have any proofs of statistical consistency for that estimation using
quartet amalgamation methods.

Another technique that might lead to phylogenetic network estimation meth-
ods that are of practical benefit would seek to modify the algorithms used for
QBTE so that they were guaranteed to return network topologies even when
the conditions for exact accuracy did not apply. Such extensions could poten-
tially be implemented by seeking level-1 network topologies that agreed with
the maximum number of input quartet trees.
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Finally, another direction for future work is to determine whether more com-
plex graphical models (e.g., level-2 phylogenetic networks) are identifiable under
the WERN 2023 model, and whether level-1 phylogenetic networks are identifi-
able under character evolution models that are more complex than the WERN
2023 model. Future work is needed to explore these different possibilities.
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Appendix

We restate and then sketch proofs for Theorems 1–3.

Theorem 1. Let N be a rooted phylogenetic network, and let characters evolve
down N under the WERN 2023 model, and let Q be the output of QTC. Then
very quartet tree in Q will be in Q(Nr). Furthermore, as the number of charac-
ters increase, with probability converging to 1, every quartet tree in Q(Nr) will
appear in Q. Thus, QTC is a statistically consistent estimator of Q(Nr).

Proof. We begin by showing that every quartet tree placed in Q is also in Q(Nr).
Recall that quartet tree uv|xy is included in Q if and only if some character α
is found such that α(u) = α(v) ̸= α(x) = α(y) and the states α(u), α(x) are
non-homoplastic. This character evolves down some tree T contained inside the
network. Moreover, since the states exhibited at u, v, x, y are non-homoplastic,
there is a path in T connecting u and v and another path connecting x and y
and these two paths do not share any vertices. Hence, the quartet tree uv|xy is
in Q(Nr).

We now show that in the limit, every quartet tree in Q(Nr) is also in Q. Let
ab|cd be a quartet tree in Q(Nr). Hence, there is a rooted tree T contained in N
that induces this quartet tree (when T is considered as an unrooted tree). With
positive probability, a character will evolve down T . Without loss of generality,
assume a and b are siblings in the rooted version of T , so that their least common
ancestor, lcaT (a, b), lies strictly below the root of the tree T .

Since a and b are siblings, there is an edge e above lcaT (a, b) within T . It
follows that the probability that a random character evolves down T , selecting
a non-homoplastic state at the root, and then changing on e but on no other
edge in T , is strictly positive. Note that for any such characters α, we have
α(a) = α(b) and α(c) = α(d) where α(a) and α(b) are different and both are
non-homoplastic states. In such a case, Q will include quartet tree ab|cd. Thus,
in the limit as the number of characters increases, with probability converging
to 1, Q will contain every quartet tree in Q(Nr).
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Since in the limit Q ⊆ Q(Nr) and Q(Nr) ⊆ Q, it follows that Q = Q(Nr)
with probability converging to 1.

Theorem 2. The QBTE (Quartet-based topology estimation) method is
statistically consistent for estimating the unrooted topology of the network N
under the WERN 2023 model when the rooted network N is a level-1 network
where all cycles have length at least six; furthermore, QBTE runs in polynomial
time.

Proof. By Theorem 1, we have shown that as the number of characters increases,
we can construct Q(Nr). The algorithm we provide, QBTE, has the same two-
step approach as the algorithm in [10], differing only in the second step which
expands polytomies in the SN-tree into cycles. In [10], they showed that when
their input was all of Q(N) they would correctly reconstruct the level-1 network
N . However, in our study, we only have Q(Nr) available, and Q(Nr) is a proper
subset of Q(N). We therefore modified Gambette’s algorithm, retaining the
first step but modifying the second step. We proved in Section 3.2.2 that our
modification to Gambette’s algorithm correctly replaces polytomies by cycles
under the conditions given (i.e., where N is a level-1 network, all cycles have
length at least six, and Q(Nr) is given as input). Since a tree-based network in
which no two cycles share any nodes is a level-1 network, it follows that QBTE
is statistically consistent. Moreover, it is trivial that QBTE runs in polynomial
time, since Gambette’s algorithm [10] is polynomial time, and the modification
to Gambette’s algorithm only changes the second step and the replacement is
polynomial time.

Theorem 3. Let N be the true unrooted level-1 network and let C0 denote the
set of homoplasy-free phonological characters that exhibit both 0 and 1 at the
leaves of N . Rooting N on any edge returned by Root-Network will produce a
rooted network on which all characters in C0 can evolve without homoplasy, and
the edge containing the true location of the root will be in the output returned by
Root-Network. Furthermore, when given the unrooted topology of the true phy-
logenetic network as input, Root-Network is a statistically consistent estimator
of the root location under the assumption that the probability of homoplasy-free
phonological characters is positive.

Proof. We sketch the proof. It is straightforward to verify that an edge is
colored red for a character α if and only if subdividing the edge and labelling the
introduced node by 0 for α makes α homoplastic on every tree contained within
the network. Furthermore, it is not hard to see that if we root the network on
any edge that remains green throughout Root-Network, then all characters in C0
will be homoplasy-free. As a result, the first part of the theorem is established.

For the second part of the theorem, if the probability of homoplasy-free
phonological characters is positive, then with probability converging to 1, for
every edge in the true network, there is a character α that changes on the
edge but on no other edge; hence, α will be non-constant and homoplasy-free.
Let e1 and e2 be the two edges incident to the root, and suppose the input
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set of characters contains α1 and α2 homoplasy-free characters that change
on e1 and e2, respectively, then these two characters will mark as red every
edge below e1 and e2. In the unrooted topology for N , the root is suppressed
and edges e1 and e2 are merged into the same single edge, e. Hence, when
Root-Network is applied to the unrooted topology for N , if characters α1 and
α2 are in the input, then the only edge that is not colored red will be the
edge e containing the suppressed root. In conclusion, since the probability of
homoplasy-free phonological characters is strictly positive, as the number of
such characters increase, the probability that every edge other than the root
edge will be red will converge to 1. Thus, Root-Network will uniquely leave
the single edge containing the suppressed root green, establishing that it is
statistically consistent for locating the root in the network.
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