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Today

We will cover

I Review of weak and strong induction

I Practicing strong induction



Weak Induction vs. Strong Induction

I Weak Induction asserts a property P(n) for one value of n
(however arbitrary)

I Strong Induction asserts a property P(k) is true for all values
of k starting with a base case n0 and up to some final value n.

I The same formulation for P(n) is usually good - the difference
is whether you assume it is true for just one value of n or an
entire range of values.

Sometimes Strong Induction is needed.



Recurrence relations

Recurrence relations are generally functions defined recursively:

1. g(1) = 3 and g(n) = 3 + g(n − 1) for n ≥ 2

2. f (1) = f (2) = 1 and f (n) = f (n − 1) + f (n − 2) for n ≥ 3.

3. h(1) = 1, h(2) = 2 and h(n) = h(1) + h(2) + . . . + h(n − 1) if
n ≥ 3

Note that

I g(n) only depends on g(n − 1)

I f (n) depends on f (n − 1) and f (n − 2), and

I h(n) depends on h(1), h(2), . . . , h(n − 1)

Hence you must use strong induction for anything you want to
prove about f (n) or h(n) but you could have used weak induction
for g(n).

Strong induction is always valid, so practice using it.



Strong Induction

Points:

I Helpful to always state what you want to prove as a boolean
statement, P(n), that depends on a parameter n

I Explicitly check the base cases

I Explicitly write down your Inductive Hypothesis: For example,
“Our Inductive Hypothesis is that P(1) ∧ P(2) . . . ∧ P(N) is
true for some arbitrary N ≥ n1” (where n1 is the largest base
case you checked)

I Make sure your proof uses the information in your problem
(e.g., if you are given a recursively defined function, use the
its recursive definition)

I Make sure you show how you use the Inductive Hypothesis

I Make sure you justify every step (unless it is only arithmetic)



Recall the Fibonacci numbers

Definition of function f : Z+ → Z:

I f (1) = f (2) = 1 and

I f (n) = f (n − 1) + f (n − 2) for n ≥ 3

How quickly does f (n) grow?



Growth of Fibonacci numbers

Let’s calculate some values

f (1) = 1
f (2) = 1
f (3) = f (2) + f (1) = 2
f (4) = f (3) + f (2) = 2 + 1 = 3
f (5) = f (4) + f (3) = 3 + 2 = 5
f (6) = f (5) + f (4) = 8
f (7) = f (6) + f (5) = 13
f (8) = f (7) + f (6) = 21
f (9) = f (8) + f (7) = 34
f (10) = f (9) + f (8) = 55

Question: Is f (n) ≥ 2n for all n ≥ 8?



Proving properties about Fibonacci numbers

Definition of function f : Z+ → Z:

I f (1) = f (2) = 1 and

I f (n) = f (n − 1) + f (n − 2) for n ≥ 3

We wish to prove f (n) ≥ 2n for n ≥ 8.

We check the first few cases...

f (8) = f (7) + f (6) = 21
f (9) = f (8) + f (7) = 34
f (10) = f (9) + f (8) = 55

So the statement holds for n = 8, 9, 10.



Proving f (n) ≥ 2n for n ≥ 8

Definition of function f : Z+ → Z:

I f (1) = f (2) = 1 and

I f (n) = f (n − 1) + f (n − 2) for n ≥ 3

We wish to prove f (n) ≥ 2n for n ≥ 8.

Let P(k) be the statement that f (k) ≥ 2k .

Base cases: we already have shown P(N) is true for N = 8, 9, 10.
Let N ≥ 10 be arbitrary (note that I pick 10 because that is the
largest base case I examined).
Our Inductive Hypothesis is that P(k) is true for all k , 8 ≤ k ≤ N.



Proving f (n) ≥ 2n for n ≥ 8

Recall that N ≥ 10 is arbitrary.

The Inductive Hypothesis is

I P(k) : f (k) ≥ 2k for all integers k between 8 and N.

The Inductive Step is to show that
[P(8) ∧ P(9) ∧ . . . ∧ P(N)]→ P(N + 1)

We write down what P(N + 1) asserts to help us come up with the
proof!

P(N + 1) asserts that f (N + 1) ≥ 2(N + 1)

In other words, we want to use the I.H. to prove that
f (N + 1) ≥ 2(N + 1).



Proving f (n) ≥ 2n for n ≥ 8
The Inductive Hypothesis is

I P(8) ∧ P(9) ∧ . . . ∧ P(N) is true

where P(k) asserts that f (k) ≥ 2k and N ∈ Z≥10 is arbitrary.

Since N ≥ 10, by the definition of the function f :

I f (N + 1) = f (N) + f (N − 1)

Note that N − 1 and N − 2 are both at least 8. Therefore, by the
I.H.:

I f (N) ≥ 2N and

I f (N − 1) ≥ 2(N − 1)

Hence f (N + 1) ≥ 2N + 2(N − 1) ≥ 4N − 2 ≥ 2(N + 1)

Note: the second inequality uses that N ≥ 10.

Hence f (N + 1) ≥ 2(N + 1), which is the same as P(N + 1).

Since N ≥ 10 was arbitrary, P(N) is true for all N ≥ 8.



Another Strong Induction problem

Let g : Z+ → Z be defined by

I g(1) = 1

I g(2) = 3

I g(n) = g(n − 2) if n ≥ 3

For this function g :

I Write down g(n) for all n = 1, 2, . . . , 10

I Guess a closed form solution for g(n) (use your base cases!)

I What is your inductive hypothesis? (State this carefully!)

I Prove your closed form solution true by strong induction.



Another Strong Induction Problem

Let g : Z+ → Z be defined by g(1) = 1, g(2) = 3, and
g(n) = g(n − 2) if n ≥ 3.

For this function g :
I Write down g(n) for all n = 1, 2, . . . , 10

I 1, 3, 1, 3, 1, 3, 1, 3, 1, 3

I Guess a closed form solution for g(n)
I g(n) = 1 if n is odd and g(n) = 3 if n is even

I What is your inductive hypothesis?

I Let P(n) denote g(n) = 1 if n is odd and g(n) = 3 if n is even.
I Our Inductive Hypothesis is that P(n) is true for all

n, 1 ≤ n ≤ N.
I We will try to infer that P(N + 1) is true.



Proving closed form solution for g(n)

Note: we came up with the closed form solution by computing
g(n) for n = 1, 2, 3, 4, . . . , 10.

Hence, we have verified that P(n) is true for n = 1, 2, . . . , 10.

These are our base cases! (And no, we didn’t need them all.)

So we can assume N ≥ 10.



Proving closed form solution for g(n)

Recall g(1) = 1, g(2) = 3, and g(n) = g(n − 2) if n ≥ 3.

We let P(n) denote the statement: g(n) = 1 if n is odd and
g(n) = 3 if n is even.

We wish to prove that P(n) is true for all n ∈ Z+.

Let N ≥ 10 be arbitrary.

Our Inductive Hypothesis is that P(1) ∧ P(2) ∧ . . . ∧ P(N) is true.

We wish to infer that P(N + 1) is true.

We write down what P(N + 1) asserts:

g(N + 1) = 1 if N + 1 is odd and g(N + 1) = 3 if N + 1
is even.



Proving closed form solution for g(n)
Since N ≥ 10, N + 1 ≥ 11.
Therefore, by the definition of the function g , we have:

g(N + 1) = g(N + 1− 2) = g(N − 1)

Note that 9 ≤ N − 1 < N so that by the Inductive Hypothesis,
P(N − 1) is true.
Hence g(N − 1) = 1 if N − 1 is odd and g(N − 1) = 3 if N − 1 is
even.

But note that

I N − 1 and N + 1 have the same parity (both are odd or both
are even)

Therefore, we have established that:

I g(N + 1) = 1 if N + 1 is odd and

I g(N + 1) = 3 if N + 1 is even

In other words, we have shown that P(N + 1) is true.
Since N ≥ 10 was arbitrary, P(N) is true for all n ∈ Z+.



Why would simple induction have failed?

Note that g(N + 1) is defined in terms of g(N − 1), so we need a
statement that is true about g(N − 1) and not just about g(N).

In other words, P(N) is not enough to establish P(N + 1).

We also needed P(N − 1).



Deciding when Strong Induction is necessary

Suppose you are asked to prove a theorem about a recursively
defined set or function. If that definition depends only on the
previous value, then simple induction will work. Otherwise you
probably need strong induction.
Suppose you are asked to establish a bound on each of the
following functions; would you need strong induction, or would
weak induction suffice?

1. f (1) = 0, f (n) = 3f (n − 1) + 1 if n ≥ 2

2. g(1) = 0, g(2) = 3, g(n) = 2g(n − 1) + g(n − 2) if n ≥ 3

3. h(1) = 3, h(2) = 3, h(n) = h(n − 1) + h(n − 2) if n ≥ 3

4. k(3) = 4, k(4) = 5, k(n) = k(n − 2) if n ≥ 5

5. p(1) = True, p(2) = False, p(n) = p(n− 1)∨ p(n− 2) if n ≥ 3

6. q(1) = True, q(2) = False, q(n) = ¬q(n − 1) if n ≥ 3



Class Exercise

Let f : Z+ → Z be defined by

I f (1) = 1

I f (n) = 1 +
∑n−1

i=1 f (i) if n ≥ 2

For example, f (2) = 1 + f (1) = 2.
Do the following:

I Compute f (3), f (4), and f (5).

I Come up with a closed form solution for f (n).

I Prove it correct by strong induction on n.



Strong Induction

Points:

I Helpful to always state what you want to prove as a boolean
statement, P(n), that depends on a parameter n

I Explicitly check the base cases

I Explicitly write down your Inductive Hypothesis: For example,
“Our Inductive Hypothesis is that P(1) ∧ P(2) . . . ∧ P(N) is
true for some arbitrary N ≥ n1” (where n1 is the largest base
case you checked)

I Make sure your proof uses the information in your problem
(e.g., if you are given a recursively defined function, use the
its recursive definition)

I Make sure you show how you use the Inductive Hypothesis

I Make sure you justify every step (unless it is only arithmetic)



Next class

Let f : Z+ × Z+ → Z+ be defined by

I f (n,m) = n + m if n = 1 or m = 1,

I f (n,m) = f (n − 1,m) + f (n,m − 1), otherwise

For this function f :

I Compute f (i , j) for all i , j with 1 ≤ i , j ≤ 3

I See if you can prove f (i , j) ≥ i + j by induction.


