CS173
 More Complicated Induction Proofs

Tandy Warnow

September 20, 2018

CS 173
More complicated Induction Proofs
Tandy Warnow

Today

We will cover

- Info about Midterm \#1
- Info about CS 196
- Review of weak and strong induction
- Proving statements about two variables using induction

Midterm \#1

Midterm \#1 is October 11, 7:15 PM to 8:30 PM
Please see the course website for how to request a make-up exam time (deadline is October 2, noon)

Midterm 1 will have four parts:

- One proof by weak induction
- One proof by strong induction
- One proof by contradiction
- Multiple choice problems (covering everything)

See http://tandy.cs.illinois.edu/173-2018-midterm1-prep.pdf for some sample problems.

CS 196

First homework due tomorrow via Moodle!

CS 196 website: http://tandy.cs.illinois.edu/CS196-2018.html

If you are registered for CS 196, please email me to let me know if you would like to have regular times to meet as a group with me.

Weak Induction vs. Strong Induction

- Weak Induction asserts a property $P(n)$ for one value of n (however arbitrary)
- Strong Induction asserts a property $P(k)$ is true for all values of k starting with a base case n_{0} and up to some final value n.
- The same formulation for $P(n)$ is usually good - the difference is whether you assume it is true for just one value of n or an entire range of values.

Sometimes Strong Induction is needed.

Recurrence relations

Recurrence relations are generally functions defined recursively:

$$
\begin{aligned}
& \text { 1. } g(1)=3 \text { and } g(n)=3+g(n-1) \text { for } n \geq 2 \\
& \text { 2. } f(1)=f(2)=1 \text { and } f(n)=f(n-1)+f(n-2) \text { for } n \geq 3 \text {. }
\end{aligned}
$$

Note that $f(n)$ depends on $f(n-1)$ and $f(n-2)$.
Hence you must use strong induction for anything you want to prove about $f(n)$, but you could have used weak induction for $g(n)$.

Strong induction is always valid, so practice using it.

Functions of two variables

Let $f: \mathbb{Z}^{+} \times \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$be defined by

- $f(n, m)=n+m$ if $n=1$ or $m=1$,
- $f(n, m)=f(n-1, m)+f(n, m-1)$, otherwise

Class exercise: Compute $f(1,3)$ and $f(2,2)$

Functions of two variables

Let $f: \mathbb{Z}^{+} \times \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$be defined by

- $f(n, m)=n+m$ if $n=1$ or $m=1$,
- $f(n, m)=f(n-1, m)+f(n, m-1)$, otherwise

Why is $f(1,3)=4$?

- Because we use the first bullet to compute $f(1,3)$, and we get $f(1,3)=1+3=4$
Why is $f(2,2)=6$?
- Because we use the second bullet to compute $f(2,2)$, and we get $f(2,2)=f(1,2)+f(2,1)$.
- Also, $f(1,2)=1+2=3$ and $f(2,1)=2+1=3$.
- Therefore $f(2,2)=3+3=6$.

Class Exercise

Let $f: \mathbb{Z}^{+} \times \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$be defined by

- $f(n, m)=n+m$ if $n=1$ or $m=1$,
- $f(n, m)=f(n-1, m)+f(n, m-1)$, otherwise

For this function f :

- Compute $f(i, j)$ for all i, j with $1 \leq i, j \leq 3$
- See if you can prove $f(i, j) \geq i+j$

Using induction to prove theorems about recursive functions of two variables

Let $f: \mathbb{Z}^{+} \times \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$be defined by

- $f(n, m)=n+m$ if $n=1$ or $m=1$,
- $f(n, m)=f(n-1, m)+f(n, m-1)$, otherwise

We would like to prove that $f(n, m) \geq n+m$ for all $n \geq 1$ and $m \geq 1$.

Base cases: $n=1$ or $m=1$ follows immediately. So we prove the rest by induction.

What is our inductive hypothesis?

Inductive hypothesis

Recall that

- $f(n, m)=n+m$ if $n=1$ or $m=1$,
- $f(n, m)=f(n-1, m)+f(n, m-1)$, otherwise

What happens if we try to do induction on n ?

Inductive hypothesis, continued

Recall that

- $f(n, m)=n+m$ if $n=1$ or $m=1$,
- $f(n, m)=f(n-1, m)+f(n, m-1)$, otherwise

We can't do induction on n because $f(n, m)$ depends on $f(n, m-1)$.

We also can't do induction on m because $f(n, m)$ depends on $f(n-1, m)$.

Inductive hypothesis, continued

Recall that

- $f(n, m)=n+m$ if $n=1$ or $m=1$,
- $f(n, m)=f(n-1, m)+f(n, m-1)$, otherwise

We need a value that goes down... so that $f(n, m)$ depends on values to which the inductive hypothesis can be applied.

What value goes down?

Inductive hypothesis, continued

Recall that

- $f(n, m)=n+m$ if $n=1$ or $m=1$,
- $f(n, m)=f(n-1, m)+f(n, m-1)$, otherwise

The sum of the parameters goes down!

Inductive hypothesis, continued

- $f(n, m)=n+m$ if $n=1$ or $m=1$,
- $f(n, m)=f(n-1, m)+f(n, m-1)$, otherwise

So, our inductive hyopthesis will be:
$P(K): f(n, m) \geq n+m$ for all positive integers n, m with $n+m \leq K$
Note that we are inducing on K, and defining K to be the sum of the parameters to the function f.

The base case

Recall $f: \mathbb{Z}^{+} \times \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$, and the inductive hyopthesis is:
$P(K): f(n, m) \geq n+m$ for all positive integers n, m with
$n+m \leq K$
The smallest value for $n+m$ is 2 ; hence, the base case is $K=2$.
When $K=2, n=m=1$ and the statement holds.

Finishing the Induction Proof

Recall $f: \mathbb{Z}^{+} \times \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$, and the inductive hyopthesis is: $P(K): f(n, m) \geq n+m$ for all positive integers n, m with $n+m \leq K$

To finish the induction proof, we need to show $P(K) \rightarrow P(K+1)$, which is equivalent to showing

$$
P(K) \rightarrow \forall n, m \text { such that } n+m \leq K+1, f(n, m) \geq n+m
$$

However, since the I.H. assumes $f(n, m) \geq n+m$ whenever $n+m \leq K$, we only need to show that

- $P(K) \rightarrow f(n, m) \geq n+m$ whenever $n+m=K+1$.

Another induction proof, continued

Let n, m be given so that $n+m=K+1$.
If $n=1$ or $m=1$, then by definition $f(n, m)=n+m$, and the statement holds.
So assume $n \geq 2$ and $m \geq 2$, so that

$$
f(n, m)=f(n-1, m)+f(n, m-1)
$$

Note that $n+m=K+1$ and so $n+m-1=K$.
Hence we can apply the Inductive Hypothesis to $f(n-1, m)$ and $f(n, m-1)$.

Therefore,

$$
f(n-1, m) \geq n+m-1
$$

and

$$
f(n, m-1) \geq n+m-1
$$

Hence

$$
f(n, m)=f(n-1, m)+f(n, m-1) \geq 2(n+m=1)
$$

Another induction proof, continued

So far we have shown that when n, m are both at least 2 and $n+m=K+1$, then

$$
f(n, m)=f(n-1, m)+f(n, m-1) \geq 2(n+m-1)
$$

However, a little more arithmetic finishes this!

$$
f(n, m) \geq 2(n+m-1)=n+m+(n+m-2) \geq n+m
$$

since $n+m-2 \geq 0$.
Since K was arbitrary, the statement holds for all $K \geq 2$, and hence for all pairs of positive integers n, m that sum to K.

This is what we wanted to prove. Q.E.D.

Summarizing what we did

Recall that we had a recursively defined function $f: \mathbb{Z}^{+} \times \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$, defined by

- $f(n, m)=n+m$ if $n=1$ or $m=1$,
- $f(n, m)=f(n-1, m)+f(n, m-1)$, otherwise

We wanted to prove that $f(m, n) \geq m+n$ for all positive integers m, n.

It is easy to verify this inequality for the case where $m=1$ or $n=1$. To prove it true for all m, n, we used induction.

But induction must be done for some single parameter.
We used $K=m+n$ as our single parameter.
Our inductive hyopthesis was
$P(K): f(n, m) \geq n+m$ for all positive integers n, m with
$n+m \leq K$

Class exercise

Let $f: \mathbb{Z}^{+} \times \mathbb{Z}^{+} \rightarrow \mathbb{Z}$ be defined by

- $f(1, x)=x=f(x, 1)$ for all $x \in \mathbb{Z}^{+}$
- $f(a, b)=\max \{f(a-1, b)+b, f(a, b-1)+a\}$ if $a \geq 2$ and $b \geq 2$
Compute $f(a, b)$ for all a, b with $1 \leq a, b \leq 3$.
What do you think the closed form solution should be?
What will your Inductive Hypothesis be?
At home: use induction to prove your closed form solution correct.
(Note: do you need stong induction?)

What we learned

We learned:

- The base case is sometimes more than one value.
- We learned about the difference between strong and weak induction, and that strong induction is always at least as powerful as weak induction.
- The inductive hypothesis is sometimes not on an obvious parameter, but on something defined using obvious parameters (like the sum).
- Induction can be used to prove properties about recursively defined functions and sets.

