
Big-oh stuff

Definition. You should know this definition by heart and be able to give it,
if asked.

Let f and g both be functions from R+ to R+. Then f is O(g)
(pronounced “big-oh”) if and only if there exists positive constants
C1 and C2 such that f(n) ≤ C1g(n) whenever n > C2.

This is the definition of what it means to say f is O(g). So, a real proof that f
is O(g) requires providing the constants C1 and C2 and proving the result above.
Furthermore, this definition also applies for functions defined only on natural
numbers, only on positive integers, etc. A small modification of the definition
is made when the functions can have negative values (e.g., f(n) = 3n2 − 500).

Most of the time you won’t be asked to provide the constants, but rather
to be able to guess intelligently (and back up your guess if asked) whether a
function is big-oh of another function.

Comment 1: In some very mathematically oriented presentations, O(g) is
defined to be the set of functions f such that ∃C1, C2 ≥ 0 so that f(n) ≤ C1g(n)
for all n > C2. Therefore, you may find statements like “f ∈ O(g)” instead of
“f is O(g)”. Do not be surprised - these mean the same thing.

Comment 2: Often people write “f(n) is O(g(n))” instead of “f is O(g)”.
Technically, “f(n)” refers to the value of the function f on input n, rather than
the function itself. However, by this point in time, both are acceptable ways of
communicating the same point. Just don’t be surprised when you see either one,
as they mean the same thing.

Finding the positive constants C1 and C2. But now that you know the
definition of what big-oh means, you can see the following statements will be
true.

• Technique 1: Suppose ∃C ≥ 0 so that

limn→∞
f(n)

g(n)
≤ C

Then f is O(g). Furthermore, for any C ′ > C, ∃C2 > 0 such that f(n) ≤
C ′g(n) for all n > C2.

• Technique 2: Suppose ∃C ≥ 0 such that

lim
n→∞

(log2 f(n)− log2 g(n)) ≤ C

Then f is O(g). Furthermore, for any C ′ > C, ∃C2 > 0 such that f(n) ≤
2C

′
g(n) for all n > C2.

Comments:

1



1. Note that we require that C ′ > C. Why do we do this? The reason is that
the limit may approach C from above, making it necessary to pick some
constant bigger than whatever the limit is. For example if f(n) = n2 + 1

and g(n) = n2, then f(n) > g(n) for all n, and yet limn→∞
f(n)
g(n) = 1.

If we set C1 = 1, we definitely would not be able to find C2 and prove
that f(n) ≤ C1g(n) for n > C2. On the other hand, for any C1 > 1, we
could find a corresponding value for C2. For example, if we pick C1 = 2,
then we would need C2 to satisfy n2 + 1 ≤ 2n2 whenever n ≥ C2. This is
equivalent to n2 ≥ 1, and so C2 = 1 works.

2. For Technique 1, if limn→∞
f(n)
g(n) = C > 0, then f and g are both big-oh of

each other! (Note that saying that the limit is C > 0 means that C is a
real number, and so by definition is not∞.) This situation is described by
saying that f is Θ(g) (from which it follows that g is Θ(f)). The precise
definition of Θ(g) is the set of functions f such that ∃C1, C2, N positive
real numbers such that whenever n > N then C1g(n) ≤ f(n) ≤ C2g(n).
Thus we may also say f ∈ Θ(g) instead of saying f is Θ(g).

3. For Technique 1, if limn→∞
f(n)
g(n) = 0, then f is O(g) but the converse is

not true.

4. For Technique 1, if limn→∞
f(n)
g(n) =∞, then f is not O(g), but g is O(f).

5. Note that for Technique 2, you can use any base you want for the log; this
means that you can use ln (the natural log, which is loge), or log base 2
(written log2), or any base you like.

These two results may help you find the constant C1, or determine that f is
not O(g)! However, you will still need to find the constant C2, and this will
probably require that you know how to use logarithms, among other things.

To use these techniques you should be able to compute limits, something
you may not right now be comfortable with. Furthermore, just knowing that
the limit exists (which it may not) doesn’t make it straightforward to pick the
constant.

Example #1: Consider for example the following pair of functions

• f(n) = n2

• g(n) = n3

Let’s use the techniques we’ve described to find the constants C1 and C2 to
establish that f is O(g).

If you compute limn→∞
f(n)
g(n) , you will get 0. But setting C1 = 0 won’t work.

The reason is that that ratio approaches its limit from above. So you need to
pick some constant greater than the limit, not equal to the limit. (Conversely,
if the ratio approaches its limit from below, you can pick the constant C1 to be
that limit, but setting it to be bigger is always safe.)

2



So pick C1 = 1, and then solve for C2. This one is easy: C2 = 1 works just
fine.

Example #2: Here’s another example, where it’s a bit harder to figure out
the answer.

• f(n) = 3
√
n

• g(n) = 2n

For this pair of functions, we wish to determine whether f is O(g) and
whether g is O(f).

Part 1: Determining if f is O(g).

Trying to figure out whether f is O(g) using limn→∞
f(n)
g(n) gives you some-

thing harder to compute. You’ll need to use L’Hôpital’s rule, but that may be
something you are not comfortable with in this context. Let’s try the second
approach, which is based on logarithms. (Even this you may not be comfortable
with!) Let’s take logs using base 2. Then we get

• log2 f(n) = log2(3
√
n) =

√
n log2(3). Note that 1 < log2(3) < 2, and so

log f(n) < 2
√
n.

• log2 g(n) = log2(2n) = n

We continue:

log2 f(n)− log2 g(n) =
√
n log2(3)− n < 2

√
n− n.

Note that when n > 4,
√
n > 2. Furthermore, when n > 4, it is easy to see that

2
√
n < n. Hence,

log2 f(n)− log2 g(n) ≤ 2
√
n− n < 0

How do we use this?
The analysis given above shows that if log f(n)− log g(n) < logC1 for large

enough n, then f is O(g). Therefore, if we can find a non-negative constant C1

such that logC1 > 0, we will have established that f is O(g).
What values of C1 satisfy logC1 > 0? Answer: all C1 ≥ 1.
Setting C1 = 1 then makes sense. What value would you give for C2? The

analysis here shows that C2 = 4 works. Thus we have shown that f is O(g).

Part 1: Determining if g is O(f).

We will see if we can find the constants C1 and C2 such that log2 g(n) −
log2 f(n) < C ′1 for all n > C ′2.

Recall that 2 > log2(3) > 1, and that if n > 9 then n > 3
√
n. Therefore, for

n > 9,
log g(n)− log f(n) = n−

√
n log2(3) > n− 2

√
n >
√
n

3



Since
lim
n→∞

√
n =∞,

it follows that

lim
n→∞

[log2 g(n)− log2 f(n)] ≥ lim
n→∞

√
n =∞

Thus, g is not O(f).

Example #3: Consider the following pair of functions:

• f(n) = 100n2

• g(n) = n3 + 3

From your training, you know that f is O(g) but not vice-versa. We will use the
first approach to find the constants C1 and C2 to prove that f is O(g). Using
L’Hôpital’s Rule (applied twice!!), we find that

lim
n→∞

f(n)

g(n)
= lim

n→∞

f ′(n)

g′(n)
= lim

n→∞

200n

3n2
= lim

n→∞

200

3n
= 0

Hence, we can let C1 be any positive real number. Let’s pick C1 = 100 just
to make life easy. Now we want to solve for C2. That is, we want to find C2 > 0
such that

f(n) ≤ C1g(n) for all n > C2

Substituting, we see that we want to find C2 such that 100n2 ≤ 100(n3 + 3) =
100n3 + 300 for all n > C2. It is easy to see that C2 = 1 works.

Note that we could have picked C1 = 1, and then solved for C2, but it would
have been a more intricate piece of algebra if we did that, to find C2.

Suppose we had tried to prove that g is O(f). By the same analysis as done
above,

limn→∞
g(n)
f(n) = limn→∞

g′(n)
f ′(n) = limn→∞

3n2

200n = limn→∞
3n
200 =∞

(Note that we applied L’Hôpital’s Rule twice in this derivation.) Hence, the

limit as n→∞ of g(n)
f(n) is not bounded from above, and so g is not O(f).

Example #4: Now let’s look at a more complicated example. Let g(n) = n,
and let f(n) be defined as follows:

f(n) =

{
5 if n is even

n if n is odd

Thus, f(1) = 1, f(2) = 5, f(3) = 3, f(4) = 5, f(5) = 5, f(6) = 5, f(7) =
7, f(8) = 5, etc. We want to know if f is O(g). It is challenging to apply

4



either technique to this pair of functions, since the value of f(n) depends on the
parity of n. For example, if we try to apply Technique 1, we find

f(n)

g(n)
=

{
5
n if n is even

1 if n is odd

In other words, limn→∞
f(n)
g(n) does not exist.

When we look at Technique 2, we get

log f(n) =

{
log 5 if n is even

1 if n is odd

Thus,

lim
n→∞

[log f(n)− log g(n)] =

{
log 5− 1 if n is even

0 if n is odd

Hence, once again, the limit does not exist.
In other words, these two techniques only work when the limit exists! This

does not mean that f is not O(g), but only that a different technique must be

used to determine whether f is O(g). However, note that for all n ≥ 5, f(n)
g(n) ≤ 1.

Hence, even though the limit does not exist, setting C1 = 1 and C2 = 5 allows
use to prove that f is O(g).

What about the converse? Is g big-oh of f?

g(n)

f(n)
=

{
n
5 n is even

1 n is odd

Since limn→∞
n
5 =∞, it follows that g is not O(f).

Proving that a function f is O(g) Let f and g be functions from R+ to
R+. To prove that f is O(g), you need to do one of the following:

• Find constants C1 and C2 such that f(n) ≤ C1g(n) whenever n > C2, and
prove that the inequality holds. Proving that the inequality holds might
in turn require calculus or induction, or at a minimum some algebra, so
it’s not enough to just write down the constants.

• Use one of the techniques given above (which provide implicit proofs that
these constants exist).

Obviously it’s easier to use the techniques than to find the constants and prove
the inequality holds. Therefore, it’s a good idea to learn how to use the tech-
niques.

The skills you need to use these techniques are mostly from pre-calculus and
calculus, and you are probably rusty. Please practice!

• You will need to be able to compute logarithms using any base.

5



• You will need to use L’Hôpital’s Rule.

• You need to be able to compute limits.

• You will need to compute derivatives of potentially complicated functions
(such as n3n or (1 + n)n).

Practice questions. Try to answer each of the following questions, any of
which could appear on the examlet. You could expect questions like these, even
if they are not identical.

1. Provide the definition of the set of functions f(n) that are O(n2).

2. Provide the definition of the set of functions that are Θ(n2).

3. Provide the constants C1 and C2 proving that 3n is O(3n − 2n).

4. Solve for H(n): 3n
2−1 = 4H(n)

5. Compute limn→∞
lnn
n

6. Compute log2(3f(n)n)

7. Compute log3(5n24n)

8. Determine (no proof requested), for each pair of functions below, whether
(a) f is O(g) but not vice-versa, (b) g is O(f) but not vice-versa, (c) both
are big-oh of each other, or (d) neither is big-oh of each other You should
only concern yourself with values n ≥ 1.

• f(n) = n2 and g(n) = log(nn)

• f(n) = (logn)n and g(n) =
√
n

• f(n) = log(n500) and g(n) = 100

• f(n) = (logn)500 and g(n) = 100

• f(n) = 100 + 3
n and g(n) = 5

9. Sally says f is O(g), but Bob notes that f(n) > g(n) for all n, and so says
f cannot be O(g). What do you think of this argument? Assuming that
f(n) > g(n) is true, can Sally possibly be right? Or is Bob always right?

6


