CS 173 Problems

TA: Aniket Murhekar

September 26, 2018

1 Contradiction

1. A finite set S of points in the plane has the property that any line through two of them passes through a third. Prove that all points in S lie on a line.
2. Five points are placed inside a equilateral triangle of side 1. Prove that two of these points must be at a maximum distance of $1 / 2$ from each other.
3. Prove that out of a party of 6 people, there exists a group of 3 mutual friends or a group of 3 mutual non-friends.
4. We say that a point $P=(x, y)$ in the Cartesian plane is rational if both x and y are rational. More precisely, P is rational if $P=(x, y) \in \mathbb{Q}^{2}$. An equation $F(x, y)=0$ is said to have a rational point if there exists $\left(x_{0}, y_{0}\right) \in \mathbb{Q}$ such that $F\left(x_{0}, y_{0}\right)=0$. For example, the curve $x^{2}+y^{2}-1=0$ has rational point $\left(x_{0}, y_{0}\right)=(1,0)$. Show that the curve $x^{2}+y^{2}-3=0$ has no rational points.
5. Find all solutions in non-negative integers of $x^{3}+2 y^{3}=4 z^{3}$.
6. Prove that there is no quadruple of positive integers (x, y, z, u) satisfying $x^{2}+y^{2}=3\left(z^{2}+u^{2}\right)$.

2 Induction

1. There are n identical cars on a circular track. Among all of them, they have just enough gas for one car to complete a lap. Show that there is a car which can complete a lap by collecting gas from the other cars on its way around.
2. Suppose every road in a country is one-way. Every pair of cities in the country is connected by exactly one direct road. Show that there exists a city which can be reached from every other city either directly or via at most one other city.
3. For all $n \in \mathbb{Z}$, prove that $f(n)=g(n)$, where: $f(n)=1-\frac{1}{2}+\frac{1}{3}-\cdots+\frac{1}{2 n+1}-\frac{1}{2 n}$, and $g(n)=\frac{1}{n+1}+\cdots+\frac{1}{2 n}$.
4. Consider n distinct lines in the plane such that no two are parallel and no three lines intersect at a common point. Into how many different regions is the plane divided?
5. Prove that it is always possible to cover a checkerboard of size $2^{n} n \times 2^{n}$ with one squared removed using L-shaped triominos (3 squares in the shape of an "L").
6. Prove that $(n+1)(n+2) \cdots 2 n=2^{n} \cdot 1 \cdot 3 \cdot 5 \cdots(2 n-1)$ for all $n \in \mathbb{Z}$.
7. Prove that a convex n-gon has $n(n-3) / 2$ diagonals.
