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Overview — Large alignments and trees

« Constructing MSA or tree:
« Datasets can be very large (hundreds of thousands of sequences, even 1,000,000).
« Some sequences are very short, or perhaps very long
« Species trees instead of gene trees
* Uncertain homology
« Updating an alignment or tree

« Add sequences to an alignment or tree instead of recomputing from scratch



Our methods for computing very large alignments or trees

- Methods for computing very large alignments
- SATé, PASTA, and MAGUS: best when there is limited sequence length
heterogeneity
« WITCH, WITCH-ng, and HMMerge: best when there is sequence length
heterogeneity (especially lots of very short sequences)
- Methods for computing very large maximum likelihood trees

«  GTM pipelines (Park et al.) — improves RAXML, |IQ-TREE2



MAGUS - Highly Accurate Multiple Sequence Alignment for large datasets
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Smirnov V (2021) Recursive MAGUS: Scalable and accurate multiple sequence alignment. PLOS Computational Biology 17(10):
€1008950. https://doi.org/10.1371/journal.pcbi.1008950

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008950



https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008950

GTM pipelines: Improving Large-scale Maximum Likelihood Tree Search
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* On RNASim10k: GTM most accurate topology

: “MYiaiAl *  On RNASIm50K:
Figure 2 from “Disjoint Tree Mergers for . |QTres failed

Large-Scale Maximum Likelihood Tree Estimation”, . RAXML had nearly 100% error
Park, Zaharias, and Warnow, Algorithms 2021 «  GTM most accurate




Methods for updating very large alignments or trees

- Methods for adding sequences to alignments
- MAFFT-add and MAFFT-linsi-add (no HMM)
- UPP-add, WITCH-ng-add (HMM-based)
« EMMA (Chengze Shen et al.)

- Methods for adding sequences to very large trees (phylogenetic placement)
- pplacer (Matsen et al., 2010) and EPA-ng (Barbera et al, 2019) |
« SCAMPP: scaling pplacer to large trees (Wedell et al., 2022)
« BSCAMPP: scaling EPA-ng to large trees (Wedell et al., 2023)




Intro to EMMA: Adding sequences into a constraint alignment i

« Adding sequences to a constraint alignment useful for:
1. De novo alignment

2. Updating an existing alignment

Constraint GATTC
onstrain
Alignment GACT - W GATTC-
C - TT C g%% % C_: : the constraint alignment

is preserved

~ AA-TCA
Sec%gear:jcde(S) AATCA Inferred alignment



MAFFT-linsi --add vs. HMM-based methods
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«  HMM-based methods (UPP, WITCH, etc.):
« Can only find homologous pairs to the existing columns in the constraint alignment.
«  MAFFT-linsi --add can find the two homologous pairs “C-C” in the first two columns.



EMMA - experimental results - large random constraint

method
EMMA
B MAFFT-linsi-add
B WITCH-ng-add
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“MAFFT-add had poor accuracy,
and is omitted

X” - failed to run

Observations:

EMMA is the most accurate
method, and can scale to the
largest dataset with 186,802 AA

sequences

MAFFT-linsi-add had high
accuracy but only completed on
one dataset



Intro to SCAMPP and BSCAMPP

Phylogenetic placement problem: Given a query sequence and multiple
sequence alignment, determine the placement into an existing ‘backbone’
tree.

S1 = -AGGCTATCACCTGACCTCCA-AA

S2 = TAG-CTATCAC--GACCGC--GCA 51 52
S5S3 = TAG-CT-======-= GACCGC--GCT \ /
S4 = TAC----TCAC--GACCGACAGCT

Q1L = ------- T-A--AAAC------=- / \

S4 53



Placement into a taxonomy of full-length sequences

Fragmentary sequences Full-length sequences for
from some gene same gene, and an alignment
and a tree
ACCG Metagenomics: lots of

CGAG
CGG

GGCT
TAGA
GGGGG
TCGAG

reads inserted e
independently

ACCT AGG...GCAT TAGC...CCA TAGA..CTT AGC...ACA ACT..TAGA..A

uuuuuu



Leading Methods for Phylogenetic Placement

Maximum likelihood methods (expensive to run):

e pplacer (Matsen et al., 2010)
e EPA-ng (Barberaetal., 2019)

Distance-based methods:

e APPLES-2 (Balaban et al., 2021).

Parsimony-based methods:
e UShER (Turakhia et al., 2021)
Alignment-free methods:

e App-SpaM (Blanke et al., 2021)
e RAPPAS (Linard et al., 2019)

pplacer and EPA-ng limited to small
backbone trees

EPA-ng scales sublinearly with number
of queries

Our goal: Scaling ML phylogenetic
placement methods to large trees and
many queries



SCAMPP Framework (Wedell et al., TCBB 2022)

Designed to allow existing phylogenetic placement methods use larger backbone trees.
Used with specified phylogenetic placement method (e.g., pplacer)

Input: Backbone tree with branch lengths, alignment and set of aligned query sequences, and a
subtree size.

For each query sequence:
Stage 1- Extract placement subtree from backbone tree

Stage 2 - Use pplacer to find edge in placement subtree and location and distal length along
placement edge.

Stage 3 - Find edge in backbone tree using branch lengths.



SCAMPP Results

SCAMPP implemented with EPA-ng and pplacer show better accuracy and competitive runtime than
APPLES-2 for SINGLE QUERY SEQUENCE PLACEMENT.
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EPA-ng Scales the Number of Queries

EPA-ng’s runtime scales sublinearly with respect to the number of queries.
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Batch-SCAMPP initial results

Table 3 Testing Data Results for Method Comparison on RNASim (50,000 sequences in the
backbone tree with 10,000 fragmentary query sequences).

RNASim
Method || Delta Error | Runtime (minutes) | Memory (GB)
BSCAMPP (e) 0.50 7.2 3.0
SCAMPP(e) 0.51 466.0 1.2
SCAMPP (p) 0.46 1421.3 0.2

BATCH-SCAMPP (2023) is a modified version of SCAMPP that is designed for use with EPA-ng, which scales
sublinearly with number of query sequences, but cannot place into large trees



Delta Error

BSCAMPP(e) vs. Alignment Free

We show App-SpaM. RAPPAS failed due to memory.
BSCAMPP uses estimated alignments using UPP.

BSCAMPP runtime is largely estimating alignment.
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BSCAMPP(e) vs. APPLES-2

APPLES-2 is very fast and has low memory requirement, but has much RNASim 180K (testing clade)
higher placement error than Batch-SCAMPP(EPA-ng)
e Fragmentary queries (~150nt)
BSCAMPP(EPA-ng) runtime is sublinear with number of query sequences e 180,000 leaf backbone tree

e Upto 20,000 query sequences
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BSCAMPP(e) vs. UShER

Using true alignments RNASim 50K (training clade)

e Fragmentary queries (~150nt)

Memory usage less than 4GB for both methods. e 50,000 leaf backbone tree
e 10,000 query sequences
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Delta Error

More UShER vs. BSCAMPP(e) Changing rate of evolution

UShER still worse than BSCAMPP with lower rates of evolution 5000M2: high rate

Placing 10,000 fragments onto 4,000 leaf backbone trees 5000M3: medium rate

5000M4: low rate
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. New approaches to constructing and updating
large-scale alignment and tree estimation,

with outstanding accuracy

. All software available in open-source form on
github

. We are looking for collaborations
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Backup slides - results with MAFFT --add
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