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Phylogeny (evolutionary tree)



Phylogeny + genomics = genome-scale phylogeny estimation
. 



Estimating the Tree of Life

Basic Biology:
How did life evolve?

Applications of phylogenies to:
protein structure and function
population genetics
human migrations
metagenomics

Figure from
https://en.wikipedia.org/wiki/Common_descent



Estimating the Tree of Life

Large datasets!
Millions of species
thousands of genes

NP-hard optimization problems
Exact solutions infeasible
Approximation algorithms 
Heuristics
Multiple optima

High Performance Computing:
necessary 
but not sufficient

Figure from
https://en.wikipedia.org/wiki/Common_descent



Goal of this PPoSS project (wrt Phylogeny)

• Phylogeny estimation can be seen as a statistical estimation problem.
• We want fast and accurate methods that are scalable to large 

datasets (thousands to hundreds of thousands of species, and
genome-scale data).

• We also want these methods to have statistical guarantees (provably
statistically consistent).

• The basic technique we will use is divide-and-conquer: using the best 
methods on subsets.



“Boosters”, or “Meta-Methods”

• Meta-methods use divide-and-conquer and iteration (or other 
techniques) to “boost” the performance of base methods 
(phylogeny reconstruction, alignment estimation, etc)

Meta-methodBase method M M*



Today’s Fast Intro to Phylogenetics Research

• Models of evolution, identifiability, statistical consistency
• Trees, additive matrices, and chordal graphs
• Divide-and-conquer phylogeny estimation: overlapping vs disjoint subsets
• Genome-scale phylogeny: 

• Incomplete lineage sorting and species tree estimation under the Multi-
Species Coalescent model (MSC)

• ASTRAL: non-parametric accurate and statistically consistent species tree 
estimation under the MSC

• TreeMerge/GTM: scaling species tree methods to large datasets



Phyogenomic Pipeline

• Assemble and annotate genomes (e.g., determine orthologs)
• Compute multiple sequence alignments of individual loci
• Construct gene trees
• Construct species tree
• Perform post-tree analyses (e.g., estimate dates, infer selection, etc.)
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DNA Sequence Evolution (Idealized)
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Phylogeny Problem
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Markov Models of Sequence Evolution
The different sites are assumed to evolve i.i.d. down the model tree

Simplest site evolution model (Jukes-Cantor, 1969):

• The model tree T is binary and has substitution probabilities p(e) on each edge e, 
with 0<p(e)<3/4.

• The state at the root is randomly drawn from {A,C,T,G} (nucleotides)

• If a site (position) changes on an edge, it changes with equal probability to each of 
the remaining states.

• The evolutionary process is Markovian.

More complex models (such as the Generalized Time Reversible model) are also 
considered, often with little change to the theory.  



FN: false negative
(missing edge)

FP: false positive
(incorrect edge)

FN

FP50% error rate



Is method M statistically consistent under 
model G?

Error
in species tree 
inferred by  
method M

Amount of data
generated under model G and 
then given to method M as input

Question answered by 
mathematical proof



Questions 

• Is the model tree identifiable?
• Which estimation methods are statistically consistent under this 

model?
• How much data does the method need to estimate the model tree 

correctly (with high probability)?
• What are the computational issues?



Answers for Gene Tree Evolution?
• We know a lot about which site evolution models are identifiable, and 

which methods are statistically consistent.
• Maximum Likelihood statistically consistent, but NP-hard (good heuristics)
• Distance-based methods also statistically consistent and typically polynomial 

time, but generally less accurate than maximum likelihood

• We know a little bit about the sample complexity (i.e. sequence length 
requirements) for standard methods.

• Maximum likelihood has optimal sample complexity, standard distance-based 
methods do not

Take home message: maximum likelihood preferred, even though hard to 
find good solutions



Genome-scale data?

error

Data



Phylogeny + genomics = genome-scale phylogeny estimation
. 



Gene tree discordance
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Incomplete Lineage Sorting 
(ILS) is a dominant cause of 
gene tree heterogeneity



Gene Trees inside the Species Tree (Multi-Species Coalescent)

Present

Past

Courtesy James Degnan

Gorilla and Orangutan are not siblings in the species tree, 
but they are in the gene tree.



Gene Trees inside the Species Tree (Multi-Species Coalescent)

Present

Past

Courtesy James Degnan

Gorilla and Orangutan are not siblings in the species tree, 
but they are in the gene tree.

Deep coalescence  =
INCOMPLETE 
LINEAGE
SORTING (ILS):
gene tree can be different
from the species tree



1KP: Thousand Transcriptome Project

l 103 plant transcriptomes, 400-800 single copy “genes”

l Next phase will be much bigger

l Wickett, Mirarab et al., PNAS 2014

G. Ka-Shu Wong
U Alberta

N. Wickett
Northwestern

J. Leebens-Mack
U Georgia

N. Matasci
iPlant

T. Warnow,                S. Mirarab,                N. Nguyen
UT-Austin                  UT-Austin                 UT-Austin

Major Challenge:
• Massive gene tree heterogeneity consistent with ILS



Avian Phylogenomics Project 
Erich Jarvis, 
HHMI 

Guojie Zhang,  
BGI 

•  Approx. 50 species, whole genomes 
•  14,000 loci 
•  Multi-national team (100+ investigators) 
•  8 papers published in special issue of Science 2014 

Biggest computational challenges:  
 1. Multi-million site maximum likelihood analysis (~300 CPU years, 
  and 1Tb of distributed memory, at supercomputers around world) 
 2. Constructing “coalescent-based” species tree from 14,000  
  different gene trees 
  

MTP Gilbert, 
Copenhagen 

Siavash Mirarab,   Tandy Warnow, 
Texas                Texas and UIUC 

Major challenge:
• Massive gene tree heterogeneity consistent with ILS.



Hierarchical Model: MSC+GTR

• Multi-locus data, generated by a hierarchical model
• Species tree generates gene trees under Multi-Species Coalescent (MSC)
• Gene trees generate sequences under the Generalized Time Reversible (GTR) 

model

• How can we estimate the species tree from the sequence data?
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Step 1: infer gene trees (traditional methods)

Step 2: infer species trees
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Step 1: infer gene trees (traditional methods)

Step 2: infer species trees

Suppose we can estimate all the
gene trees correctly. 

Can we estimate the species trees 
from lots of true gene trees?



How to estimate a 4-leaf species tree

Theorem (Allman et al.): Under the multi-species coalescent 
model, for any four taxa A, B, C, and D, the most probable 
unrooted gene tree on {A,B,C,D} is identical to the unrooted 
species tree induced on {A,B,C,D}.



How to estimate a 4-leaf species tree

Theorem (Allman et al.): Under the multi-species 
coalescent model, for any four taxa A, B, C, and D, the 
most probable unrooted gene tree on {A,B,C,D} is 
identical to the unrooted species tree induced on 
{A,B,C,D}. 



Species tree estimation from 
unrooted gene trees

Corollary: Under the multi-species coalescent 
model, the species tree is identifiable from the gene 
tree distribution

Proof: For every four species, select most frequently 
observed tree as the species tree. Then combine quartet 
trees!
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Corollary: Under the multi-species coalescent model, the 
species tree is identifiable from the gene tree distribution
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observed tree as the species tree. Then combine quartet 
trees!



ASTRAL 
[Mirarab, et al., ECCB/Bioinformatics, 2014]

• Optimization Problem (NP-Hard):

• Theorem: Statistically consistent under the multi-
species coalescent model when solved exactly

15

Find the species tree with the maximum number of induced 
quartet trees shared with the collection of input gene trees

Set of quartet trees 
induced by T

a gene tree

Score(T ) =
X

t2T
|Q(T ) \ Q(t)|

all input gene trees



ASTRAL

• Statistically consistent under the MSC, and runs in polynomial time
• Solves constrained version of the NP-hard Maximum Quartet Support 

problem using dynamic programming
• Input: Gene trees and set X of allowed bipartitions
• Output: Species tree T that maximizes the quartet support criterion, subject 

to drawing its bipartitions from the set X
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ASTRAL – great, but…

• The good: ASTRAL is
• increasingly used in practice 
• statistically consistent given true gene trees 
• sometimes more accurate than concatenation, but impacted by gene tree 

estimation error
• very fast for many datasets (faster than concatenation) 

• The bad: ASTRAL can fail to complete on large enough datasets within 
reasonable time frames (days of computation)



The alternatives are worse

• Concatenation Analyses (e.g., using RAxML): 
• most commonly used method, not statistically consistent, sometimes more 

accurate than summary methods
• computationally intensive (e.g., 250 CPU years for the Avian Phylogenomics 

project with only 48 species) and do not scale to large numbers of species

• Co-estimation of gene trees and species trees: too expensive
• Other statistically consistent methods: not as accurate as ASTRAL



Goal of this PPoSS project (wrt Phylogeny)

• Phylogeny estimation can be seen as a statistical estimation problem.
• We want fast and accurate methods that are scalable to large 

datasets (thousands to hundreds of thousands of species, and
genome-scale data).

• We also want these methods to have statistical guarantees (provably
statistically consistent).

• The basic technique we will use is divide-and-conquer: using the best 
methods on subsets.



Divide-and-conquer using Chordal Graphs

• A matrix is additive if it equals path lengths in an edge-weighted tree
• Distances calculated in phylogenetics (from sequence data) converge 

to additive matrices, as the sequence length increases
• If we threshold an additive matrix, we obtain a chordal graph: one 

that has no simple cycles of size four or larger
• Chordal graphs have lovely properties

• Can list all maximal cliques in polynomial time
• Minimum vertex separators are maximal cliques
• Can obtain decompositions into overlapping subsets, and employ in divide-

and-conquer strategies



Divide-and-conquer using Chordal Graphs

• Chordal graphs have lovely properties
• Can list all maximal cliques in polynomial time
• Minimum vertex separators are maximal cliques
• Can obtain decompositions into overlapping subsets, and employ in divide-

and-conquer strategies

• If we do this, we need methods that combine overlapping subset
trees, i.e., “supertree” methods

• These approaches have not been as scalable as needed.



Decompose 
species set into 
pairwise disjoint 
subsets.Full

species
set

Build a tree on each
subset

Compute tree on entire set of species 
using “Disjoint Tree Merger” method

Tree
on full

species set

Auxiliary
Info

(e.g., distance
matrix)

Divide-and-Conquer using Disjoint Tree Mergers
Note: use most 
accurate method 
on subsets, and 
treat as absolute 
constraints
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Decompose 
species set into 
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Theorem: 
TreeMerge+ASTRAL and 
GTM+ASTRAL are both
statistically consistent and 
polynomial time



Guide Tree Merger
• Smirnov and Warnow, RECOMB-Comparative Genomics
• Guide Tree Merger (GTM): Another Disjoint Tree Merger 

method… unlike TreeMerge, it does not allow blending
• Github site: https://github.com/vlasmirnov/GTM

Algorithmic strategy:
• divide species set into disjoint subsets, 
• compute species trees on the subsets using selected species 

tree method, and 
• connect subset trees by adding edges (no blending!), so as to 

minimize distance to the given guide tree (polynomial time!)

https://github.com/vlasmirnov/GTM


ASTRAL+GTM: better than ASTRAL!
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The GTM pipeline 
used with RAxML
on subsets matches
accuracy with
RAxML, but is much 
faster



Summary about phylogenetic tree estimation

• The best tree estimation methods are computationally 
intensive, and tree-space grows exponentially.

• The Divide-and-Conquer pipelines we are developing (especially 
GTM) maintain statistical consistency, maintain or improve 
accuracy and are much faster. 

• In addition, they naturally enable parallel implementations.



What about Community Detection?

• I also work on community detection in large networks, largely in the 
context of Scientometrics 

• Our recent paper (Park et al., Complex Networks 2023) addresses 
failure of standard community detection methods (aka clustering 
methods) to produce well-connected clusters.

• See https://tandy.cs.illinois.edu/bibliometrics.html for papers

https://tandy.cs.illinois.edu/bibliometrics.html


Networks we studied



Many small edge cuts in Leiden clusters on 
real-world networks

Leiden optimizing the
Constant Potts Model (CPM)
or modularity (mod)

Results using other clustering
methods are similar



The Connectivity Modifier (CM) Pipeline

Defaults used in our study:
all clusters have min cuts above 
log10 n, where n is cluster size, 
and have size at least 11



Impact of the Connectivity Modifier

CPM clustering is impacted by the 
resolution parameter: small values
give high node coverage, but many
of these clusters are poorly
connected (even trees).

Modularity-optimization is similar to 
CPM with a small resolution 
parameter.

Using CM reduces node coverage



The CM pipeline improves accuracy 

Results for NMI accuracy on LFR networks.  Results for other criteria are similar.



Summary

• The tendency for standard clustering methods to have poorly 
connected clusters (or else have low node coverage) is striking.

• CM ensures that all returned clusters are well-connected, according
to the user specified bound

• CM improves accuracy on LFR networks
• But after CM, there is a drop in node coverage that can be large.
• How do we explain the drop in node coverage? 

• Perhaps not the case that the entire network is covered by communities?


