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Phylogenomics
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Phylogeny + genomics = genome-scale phylogeny estimation



Estimating the Tree of Life
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Basic Biology:
How did life evolve?

Applications of phylogenies to:
protein structure and function
population genetics
human migrations
metagenomics
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Large datasets!
Millions of species
thousands of genes

NP-hard optimization problems
Exact solutions infeasible

Approximation algorithms
Heuristics

Multiple optima

High Performance Computing:
necessary
but not sufficient



Goal of this PPoSS project (wrt Phylogeny)

* Phylogeny estimation can be seen as a statistical estimation problem.

* We want fast and accurate methods that are scalable to large
datasets (thousands to hundreds of thousands of species, and

genome-scale data).

* We also want these methods to have statistical guarantees (provably
statistically consistent).

* The basic technique we will use is divide-and-conquer: using the best
methods on subsets.



“Boosters”, or “Meta-Methods”

* Meta-methods use divide-and-conquer and iteration (or other
techniques) to “boost” the performance of base methods
(phylogeny reconstruction, alignment estimation, etc)




Today’s Fast Intro to Phylogenetics Research

Models of evolution, identifiability, statistical consistency

Trees, additive matrices, and chordal graphs

Divide-and-conquer phylogeny estimation: overlapping vs disjoint subsets
 Genome-scale phylogeny:

* Incomplete lineage sorting and species tree estimation under the Multi-
Species Coalescent model (MSC)

* ASTRAL: non-parametric accurate and statistically consistent species tree
estimation under the MSC

* TreeMerge/GTM: scaling species tree methods to large datasets



Phyogenomic Pipeline

* Assemble and annotate genomes (e.g., determine orthologs)

* Compute multiple sequence alignments of individual loci

* Construct gene trees

* Construct species tree

e Perform post-tree analyses (e.g., estimate dates, infer selection, etc.)
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DNA Sequence Evolution (Idealized)
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Markov Models of Sequence Evolution

The different sites are assumed to evolve i.i.d. down the model tree

Simplest site evolution model (Jukes-Cantor, 1969):

* The model tree T is binary and has substitution probabilities p(e) on each edge e,
with O<p(e)<3/4.

* The state at the root is randomly drawn from {A,C,T,G} (nucleotides)

 If a site (position) changes on an edge, it changes with equal probability to each of
the remaining states.

* The evolutionary process is Markovian.

More complex models (such as the Generalized Time Reversible model) are also
considered, often with little change to the theory.
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s method M statistically consistent under
model G?

Question answered by
mathematical proof

Error
in species tree

inferred by
method M

Amount of data
generated under model G and
then given to method M as input



Questions

e |Is the model tree identifiable?

* Which estimation methods are statistically consistent under this
model?

e How much data does the method need to estimate the model tree
correctly (with high probability)?

 What are the computational issues?



Answers for Gene Tree Evolution?

 We know a lot about which site evolution models are identifiable, and
which methods are statistically consistent.
 Maximum Likelihood statistically consistent, but NP-hard (good heuristics)

e Distance-based methods also statistically consistent and typically polynomial
time, but generally less accurate than maximum likelihood

* We know a little bit about the sample complexity (i.e. sequence length
requirements) for standard methods.
* Maximum likelihood has optimal sample complexity, standard distance-based
methods do not

Take home message: maximum likelihood preferred, even though hard to
find good solutions



Genome-scale data”?

error

Data
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Gene tree discordance

Incomplete Lineage Sorting
(ILS) is a dominant cause of
gene tree heterogeneity

| gene1000

AN

Gorilla Human Chimp Orang. Gorilla Chimp Human Orang.




(Multi-Species Coalescent)

Past
Present

Gene Trees inside the Species Tree
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Gorilla and Orangutan are not siblings in the species tree,

but they are in the gene tree.




Gene Trees inside the Species Tree (Multi-Species Coalescent)

Deep coalescence =
INCOMPLETE
LINEAGE

SORTING (ILS):
gene tree can be different

from the species tree

Past

Present

Courtesy James Degnan

Gorilla and Orangutan are not siblings in the species tree,
but they are in the gene tree.




1KP: Thousand Transcriptome Project

G. Ka-Shu Wong J. Leebens-Mack N. Wickett N. Matasci T. Warnow, S. Mirarab, N. Nguyen
U Alberta U Georgia Northwestern iPlant UT-Austin UT-Austin UT-Austin

o 103 plant transcriptomes, 400-800 single copy “genes”
o Next phase will be much bigger
o Wickett, Mirarab et al.,, PNAS 2014

Major Challenge:
* Massive gene tree heterogeneity consistent with ILS




Erich Jarvis, MTP Gilbert, Guojie Zhang, Siavash Mirarab, Tandy Warnow,
HHMI Copenhagen BGI Texas Texas and UIUC

Ry

* Approx. 50 species, whole genomes

* 14,000 loci

* Multi-national team (100+ investigators)

8 papers published in special issue of Science 2014

Major challenge:
* Massive gene tree heterogeneity consistent with ILS.




Hierarchical Model: MSC+GTR

* Multi-locus data, generated by a hierarchical model
» Species tree generates gene trees under Multi-Species Coalescent (MSC)

* Gene trees generate sequences under the Generalized Time Reversible (GTR)
model



Species tree
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Suppose we can estimate all the
gene trees correctly.

Can we estimate the species trees
from lots of true gene trees?
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Gene tree
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How to estimate a 4-leaf species tree

Theorem (Allman et al.): Under the multi-species coalescent

model, for any four taxa A, B, C, and D, the most probable
unrooted gene tree on {A,B,C,D} is identical to the unrooted
species tree induced on {A,B,C,D}.



How to estimate a 4-leaf species tree

Theorem (Allman et al.): Under the multi-species
coalescent model, for any four taxa A, B, C, and D, the
most probable unrooted gene tree on {A,B,C,D} is

identical to the unrooted species tree induced on
{A,B,C,D}.
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Species tree estimation from
unrooted gene trees

Corollary: Under the multi-species coalescent
model, the species tree is identifiable from the gene
tree distribution

Chimp Gorilla
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Species tree estimation from
unrooted gene trees

Corollary: Under the multi-species coalescent model, the
species tree is identifiable from the gene tree distribution

Proof: For every four species, select most frequently
observed tree as the species tree. Then combine quartet
trees!

Chimp Gorilla o o
0:=70%  02=15% 03=15%
’ Chimp Gorilla: Orang. Chimp Gorilla Chimp
Human Orang. Human Gorilla Human Orang.

Human Orang.



ASTRAL

[Mirarab, et al., ECCB/Bioinformatics, 2014]

* Optimization Problem (NP-Hard):

Find the species tree with the maximum number of induced

quartet trees shared with the collection of input gene trees

Set of quartet trees
induced by T

a gene tree :
all input gene trees

 Theorem: Statistically consistent under the muilti-
species coalescent model when solved exactly

15



ASTRAL

e Statistically consistent under the MSC, and runs in polynomial time

* Solves constrained version of the NP-hard Maximum Quartet Support
problem using dynamic programming
* Input: Gene trees and set X of allowed bipartitions

e Output: Species tree T that maximizes the quartet support criterion, subject
to drawing its bipartitions from the set X
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ASTRAL on biological datasets
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ASTRAL — great, but...

* The good: ASTRAL is
* increasingly used in practice
* statistically consistent given true gene trees
* sometimes more accurate than concatenation, but impacted by gene tree
estimation error
 very fast for many datasets (faster than concatenation)

* The bad: ASTRAL can fail to complete on large enough datasets within
reasonable time frames (days of computation)



The alternatives are worse

* Concatenation Analyses (e.g., using RAXML):

* most commonly used method, not statistically consistent, sometimes more
accurate than summary methods

* computationally intensive (e.g., 250 CPU years for the Avian Phylogenomics
project with only 48 species) and do not scale to large numbers of species

* Co-estimation of gene trees and species trees: too expensive
e Other statistically consistent methods: not as accurate as ASTRAL



Goal of this PPoSS project (wrt Phylogeny)

* Phylogeny estimation can be seen as a statistical estimation problem.

* We want fast and accurate methods that are scalable to large
datasets (thousands to hundreds of thousands of species, and

genome-scale data).

* We also want these methods to have statistical guarantees (provably
statistically consistent).

* The basic technique we will use is divide-and-conquer: using the best
methods on subsets.



Divide-and-conquer using Chordal Graphs

* A matrix is additive if it equals path lengths in an edge-weighted tree

* Distances calculated in phylogenetics (from sequence data) converge
to additive matrices, as the sequence length increases

* If we threshold an additive matrix, we obtain a chordal graph: one
that has no simple cycles of size four or larger

* Chordal graphs have lovely properties
e Can list all maximal cliques in polynomial time
* Minimum vertex separators are maximal cliques

e Can obtain decompositions into overlapping subsets, and employ in divide-
and-conquer strategies



Divide-and-conquer using Chordal Graphs

* Chordal graphs have lovely properties
e Can list all maximal cliques in polynomial time
* Minimum vertex separators are maximal cliques

* Can obtain decompositions into overlapping subsets, and employ in divide-
and-conguer strategies

* If we do this, we need methods that combine overlapping subset
trees, i.e., “supertree” methods

* These approaches have not been as scalable as needed.



Divide-and-Conquer using Disjoint Tree Mergers

Note: use most
accurate method
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pairwise disjoint constraints
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Info
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matrix)

Compute tree on entire set of species .
using “Disjoint Tree Merger” method



Divide-and-Conquer using Disjoint Tree Mergers

Note: use most
accurate method
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species set into treat as absolute
pairwise disjoint constraints
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species
set
ASTRAL
/
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subset
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Compute tree on entire set of species . TreeM erge or GTM

using “Disjoint Tree Merger” method



Divide-and-Conquer using Disjoint Tree Mergers

Note: use most
accurate method

Decompose on subsets, and
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j ) suwt Theorem:
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Compute tree on entire set of species . TreeMerge or GTM
using “Disjoint Tree Merger” method 5




Guide Tree Merger

* Smirnov and Warnow, RECOMB-Comparative Genomics

* Guide Tree Merger (GTM): Another Disjoint Tree Merger
method... unlike TreeMerge, it does not allow blending

e Github site: https://github.com/vlasmirnov/GTM

Algorithmic strategy:
 divide species set into disjoint subsets,

e compute species trees on the subsets using selected species
tree method, and

» connect subset trees by adding edges (no blending!), so as to
minimize distance to the given guide tree (polynomial time!)


https://github.com/vlasmirnov/GTM

ASTRAL+GTM: better than ASTRAL!

High ILS-Intron Accuracy
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Table 4 Comparison of average runtime (seconds) of
NJst-ASTRAL-GTM and ASTRAL for high ILS conditions with
introns on 1000 species

NJst-ASTRAL-GTM ASTRAL
10 Genes (n=18)
-Pre-GTM 974 n.a.
-ASTRAL n.a. 8,617.0
-GTM 04 n.a.
-Total 97.8 8,656.0
25 Genes (n=20)
-Pre-GTM 174.7 n.a.
-ASTRAL n.a. 54414
-GTM 04 n.a.
-Total 175.1 55394
1000 Genes (n=16)
-Pre-GTM 7,948.9 n.a.
-ASTRAL n.a. 149,145.9
-GTM 04 n.a.

-Total 7,949.3 153,045.9




Main competing approaches
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Traditional approach: concatenation

: supermatrix :

.I IIIIIIIIIIIIIIII 2\\\\\\\\\\\\\\\\' """"" 'IllflllllIII-'JIIIIJ'I!III:

: gene 1 i gene?2 : : gene 1000 : __ Phylogeny _)
ACTGCACACCGCTGAGCATCG CAGAGCACGCACGAA inference
ACTGC~-CCCCGCTGAGC~TCG AGCA~-CACGC~CATA

AATGC-CCCCGATGAGC~-TC- * * * * ATGAGCACGC~-C-TA

~CTGCACACGGCTGA~CAC-G AGC-TAC-CACGGAT

 Statistically inconsistent and can even
be positively misleading (proved for

unpartitioned maximum likelihood)
[Roch and Steel, Theo. Pop. Gen., 2014]

* Mixed accuracy in simulations

[Kubatko and Degnan, Systematic Biology, 2007]
[Mirarab, et al., Systematic Biology, 2014]

Orangutan

Gorilla

Error

Chimpanzee

Human

Data
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Table 6 Average runtime (seconds) of FastTree-RAXML-GTM
(GTM(RAXML)) and RAXML on 1000-species exon datasets

GTM(RAXML) RAXML
Low ILS 10 Genes (n=19)
-FastTree 279.6 n.a.
-RAXML subtrees 831.3 n.a.
-GTM 04 n.a.

Total 1,113 73137 The GTM pipeline

Low ILS 25 Genes (n=10)

-FastTree 686.3 na. USEd Wlth RAXML

-RAXML subtrees 1,460.6 n.a. On Su bsets matches
-GTM 0.4 n.a. .

Total 21473 105394 accuracy wit h

High ILS 10 Genes (n=12) .

-FastTree 283.7 n.a. RAX M L' b Ut IS Muc h
-RAXML subtrees 637.5 n.a. fa Ste r

-GTM 04 n.a.

-Total 9216 10,135.6

High ILS 25 Genes (n=20)

-FastTree 7315 n.a.

-RAXML subtrees 1363.1 n.a.

-GTM 04 n.a.

-Total 2,095 n.a.

The value for n is the number of replicates being compared, i.e., where a RAXML tree
is available



Summary about phylogenetic tree estimation

* The best tree estimation methods are computationally
intensive, and tree-space grows exponentially.

* The Divide-and-Conquer pipelines we are developing (especially
GTM) maintain statistical consistency, maintain or improve
accuracy and are much faster.

* In addition, they naturally enable parallel implementations.



What about Community Detection?

* | also work on community detection in large networks, largely in the
context of Scientometrics

e Our recent paper (Park et al., Complex Networks 2023) addresses
failure of standard community detection methods (aka clustering
methods) to produce well-connected clusters.

e See https://tandy.cs.illinois.edu/bibliometrics.html for papers



https://tandy.cs.illinois.edu/bibliometrics.html

Networks we studied

network nodes edges avg.deg  ref
Open Citations 75,025,194 1,363,605,603 36.35 (17)
CEN 13,989,436 92,051,051 13.16 (35)
cit_hepph 34,546 420,877 24.37 (36)
cit_patents 3,774,768 16,518,947 8.75 (36)
orkut 3,072,441 117,185,083 76.28 (37)
wiki_talk 2,394,385 4,659,565 3.89 (38)

wiki_topcats 1,791,489 25,444,207 2841 (39)

Table 1: Summary statistics for networks used in this study. Average degree is the average of
the node degrees across the network.



Many small edge cuts in Leiden clus
real-world networks
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Figure 1: Node coverage, connectivity, and size distribution of clusters generated by Leiden
optimizing either CPM or modularity on the Open Citations network (75,025,194 nodes). Con-

ters on

Leiden optimizing the
Constant Potts Model (CPM)
or modularity (mod)

Results using other clustering
methods are similar



The Connectivity Modifier (CM) Pipeline

Defaults used in our study:
all clusters have min cuts above

Input - _
Network log,on, where n is cluster size,
MinCut Re-Cluster and have size at least 11
Leiden Connectivity
IKC Modifier
Min Size Well Min Size
, Filtered Re-filtered
Clustering | g Clustering Connected | - Clustering
Remove User-set threshold Clusters
Trees

Figure 3: Connectivity Modifier Pipeline Schematic. The four-stage pipeline depends on user-



Impact of the Connectivity Modifier
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(a) Open Citations (b) CEN

Figure 4: Reduction in node coverage after CM treatment of Leiden clusters. The Open Ci-
tations (left panel) and CEN (right panel) networks were clustered using the Leiden algorithm
under CPM at five different resolution values or modularity. Node coverage (defined as the per-
centage of nodes in cluster of size at least 2) was computed for Leiden clusters © (lime green),
Leiden clusters with trees and/or clusters of size 10 or less filtered out © (soft orange), and after
CM treatment of filtered clusters ® (desaturated blue).

CPM clustering is impacted by the
resolution parameter: small values
give high node coverage, but many
of these clusters are poorly
connected (even trees).

Modularity-optimization is similar to
CPM with a small resolution

parameter.

Using CM reduces node coverage



The CM pipeline improves accuracy

e pre-CM e post-CM
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Results for NMI accuracy on LFR networks. Results for other criteria are similar.



Summary

* The tendency for standard clustering methods to have poorly
connected clusters (or else have low node coverage) is striking.

* CM ensures that all returned clusters are well-connected, according
to the user specified bound

* CM improves accuracy on LFR networks
e But after CM, there is a drop in node coverage that can be large.

* How do we explain the drop in node coverage?
* Perhaps not the case that the entire network is covered by communities?



