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Phylogeny + genomics = genome-scale phylogeny estimation
. 



Phylogenomic pipeline
• Select taxon set and markers

• Gather and screen sequence data, possibly identify orthologs

• Compute multiple sequence alignments for each locus, and construct gene trees

• Compute species tree or network:
• Combine the estimated gene trees, OR
• Estimate a tree from a concatenation of the multiple sequence alignments 

• Get statistical support on each branch (e.g., bootstrapping)

• Estimate dates on the nodes of the phylogeny

• Use species tree with branch support and dates to understand biology
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Figure 2, from Syst. Biol. 71(2):301–319, 2022



1KP: Thousand Transcriptome Project

l 2014 PNAS study: 103 plant transcriptomes, 400-800 single copy “genes”

l 2019 Nature study: much larger!  
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Major Challenges:
• Large alignments (and sequence length heterogeneity)
• Multi-copy genes omitted (9500 -> 400)
• Massive gene tree heterogeneity consistent with ILS



Avian Phylogenomics Project 
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HHMI 

Guojie Zhang,  
BGI 

•  Approx. 50 species, whole genomes 
•  14,000 loci 
•  Multi-national team (100+ investigators) 
•  8 papers published in special issue of Science 2014 

Biggest computational challenges:  
 1. Multi-million site maximum likelihood analysis (~300 CPU years, 
  and 1Tb of distributed memory, at supercomputers around world) 
 2. Constructing “coalescent-based” species tree from 14,000  
  different gene trees 
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Major challenges:
• Multi-copy genes omitted
• Massive gene tree heterogeneity consistent with ILS
• Concatenation analysis took 250 CPU years



Large datasets are difficult

• Two dimensions: 
• Number of loci
• Number of species (or individuals)

• Missing data
• Heterogeneity
• Many analytical pipelines involve Maximum likelihood 

and Bayesian estimation  



This talk

• Part I: New methods for multiple sequence alignment
• Part II: New methods for maximum likelihood phylogenetic placement 
• Part III: New methods for maximum likelihood tree estimation  
• Part IV: New methods for species tree estimation 

Some of this work is Not Yet Published (NYP), but all the codes 
described are available in open-source form on github

Please contact me if you wish to collaborate!



Part I: Multiple sequence alignment

• Aligning large datasets: 
• SATé (2009), PASTA (2014), MAGUS (2021) and recursive MAGUS (2022)

• Constructing alignments with sequence length heterogeneity: 
• UPP (2015),  WITCH (2022), WITCH-ng (2023), UPP2 (2023), HMMerge (2023), 

and EMMA (NYP)
• These methods can also be used to add sequences into an existing alignment

Smirnov                           Shen Liu Park
MAGUS WITCH, EMMA WITCH-ng                        HMMerge, UPP2  



Smirnov V (2021) Recursive MAGUS: Scalable and accurate multiple sequence alignment. PLOS Computational Biology 17(10): e1008950. 
https://doi.org/10.1371/journal.pcbi.1008950
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008950

MAGUS – Highly Accurate Multiple Sequence Alignment for large datasets

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008950


Part II: Phylogenetic placement

• Adding aligned sequences into a tree
• Applications:

• Taxonomic identification of reads in metagenomics and microbiome analysis
• Updating large trees



Phylogenetic Placement

Phylogenetic placement problem: Given a query sequence and multiple 
sequence alignment, determine the placement into an existing reference tree.
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Existing Methods for Phylogenetic Placement

Maximum likelihood methods (expensive to run):

● pplacer (Matsen et al., 2010) is currently the most accurate method, but fails on 
large trees (e.g., some with 4000 leaves)

● EPA-ng (Barbera et al., 2019), designed for speed with large numbers of query 
sequnces, but can fail on trees with 10,000 or more leaves

Distance-based methods:

● APPLES-2 (Balaban et al., 2021), one of the only methods that can place onto 
large backbone trees (200K sequences)

Other methods haven’t been as scalable as APPLES-2 or as accurate or as accurate as 
pplacer/EPA-ng
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SCAMPP Framework (Wedell et al., TCBB 2022)

Used with selected phylogenetic placement method (e.g., pplacer or EPA-ng)

Input: Backbone tree with branch lengths, alignment and aligned query 
sequences, and a subtree size.

● Stage 1- Extract placement subtree of 2000 leaves from backbone tree

● Stage 2 - Use pplacer to find edge in placement subtree and location and 
distal length along placement edge. 

● Stage 3 - Find edge in backbone tree using branch lengths.
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Placing  short sequences: SCAMPP accuracy, scalabilty,  and speed

APPLES-2 has high error when placing fragmentary sequences

SCAMPP enables maximum likelihood methods to place into very large trees (200K sequences)

Runtime (per sequence!) and memory usage increases with backbone tree size

Delta-error decreases with the backbone tree size: beneficial impact of increased taxon sampling!



Batch-SCAMPP (NYP) : Placing many short sequences

BATCH-SCAMPP (NYP) is a modified version of SCAMPP that is designed for use with EPA-ng, which scales 
sublinearly with number of query sequences, but cannot place into large trees 

Note: 
● APPLES-2 is very fast (uses parallelism well) and has low memory requirement, but has much higher 

placement error than Batch-SCAMPP(EPA-ng)
● EPA-ng fails to run on this backbone tree



Batch-SCAMPP: Scalability with number query sequences

APPLES-2 is very fast and has low memory requirement, but has much higher placement error 
than Batch-SCAMPP(EPA-ng)

BSCAMPP(EPA-ng) runtime is sublinear with number of query sequences



Part III: Large-scale maximum likelihood trees



Markov Models of Sequence Evolution
The different sites are assumed to evolve i.i.d. down the model tree, so it suffices to 

model a single site
Jukes-Cantor, 1969 (simplest DNA site evolution model):
• The state at the root is randomly drawn from {A,C,T,G} (nucleotides)
• The model tree T is binary and has substitution probabilities p(e) on each edge e, 

with 0<p(e)<3/4
• If a site (position) changes on an edge, it changes with equal probability to each of 

the remaining states
• The evolutionary process is Markovian.

More complex models are also considered, often with little change to the theory.  



Maximum likelihood for gene tree estimation

• Theory:
• Statistically consistent 
• Low sample complexity (Roch & Sly, Prob. Theory and Related Fields, 2017): 

phase transition (logarithmic then polynomial)  
• NP-hard 

• Empirical (based on heuristics) – using RAxML (leading ML heuristic)
• Outstanding accuracy on simulated data
• Challenging on large datasets (best methods can take CPU years or fail to run 

on large datasets)
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treat as absolute 
constraints
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Figure 2 from  “Disjoint Tree Mergers 
for Large-Scale Maximum Likelihood 
Tree Estimation”,  Park et al., 
Algorithms 2021

GTM pipeline: 
• starting tree is IQ-Tree or FastTree

(smaller datasets), 
• IQ-tree used to compute subset 

trees, and 
• then combined using GTM



GTM-pipeline:
• Scales to large datasets
• Is competitive with RAxML 

and IQ-TREE for accuracy
• Is only slightly slower than 

starting tree (but more 
accurate) 



Trends
• On RNASim10k: GTM most accurate topology
• On RNASim50K: 

• IQTree failed
• RAxML had nearly 100% error
• GTM most accurate



What about maximum likelihood score?

• We used the same technique but evaluated maximum likelihood 
scores on an EMMA alignment of a large biological dataset (protein 
sequences) from Kelly Williams with approximately 70,000 
sequences, restricting the alignment to approximately 1000 sites. 

• We let RAxML run under varying conditions: its default approach, 
using FastTree as a starting tree, and using our GTM tree as a starting 
tree.

• We compared these RAxML runs (different starting trees) to each 
other, using LG+Gamma(4) for the model



Analysis of Kelly Williams 
dataset (Minhyuk Park et al., 
NYP)

Choice of starting tree matters!

RAxML continues to improve its 
ML score during the entire 8 day 
period (but most gains are in the 
first 4 days)

GTM takes a bit more than 24 
hours



On this dataset, 
• Default RAxML worst
• FastTree is a better 

starting tree
• GTM is much better

Large datasets need 
long running times and 
very good starting 
trees!



Orangutan Gorilla Chimpanzee Human

From the Tree of the Life Website,
University of Arizona

Part IV: Species Tree Estimation  



Gene tree discordance

3

Orang.Gorilla ChimpHuman Orang.Gorilla Chimp Human

gene1000gene 1

Multiple causes for discord, 
including 
• Incomplete Lineage Sorting 

(ILS), 
• Gene Duplication and Loss 

(GDL), and
• Horizontal Gene Transfer (HGT)



Is method M statistically consistent under 
model G?

Error
in species tree 
inferred by  
method M

Amount of data
generated under model G and 
then given to method M as input

Question answered by 
mathematical proof



Genome-scale data?

error

Length of the genome 
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OrangutanGorilla ChimpHuman

Gene evolution model

Orang.
GorillaChimp

Human Orang.
Gorilla ChimpHuman

Orang.
Gorilla

Chimp
Human

Orang.
Chimp Human

ACTGCACACCG  
ACTGC-CCCCG  
AATGC-CCCCG  
-CTGCACACGG

CTGAGCATCG  
CTGAGC-TCG  
ATGAGC-TC-  
CTGA-CAC-G

AGCAGCATCGTG  
AGCAGC-TCGTG  
AGCAGC-TC-TG  
C-TA-CACGGTG

CAGGCACGCACGAA  
AGC-CACGC-CATA  
ATGGCACGC-C-TA  
AGCTAC-CACGGAT

Sequence evolution model

 1

Species tree

Gene tree

Sequence data
(Alignments)

Gene tree Gene tree Gene tree

Sequence data
(Alignments)

MSC+GTR Hierarchical Model

1. Gene trees evolve 
within the species 
tree (under the 
Multi-Species 
Coalescent model)

2. Sequences evolve 
down the gene 
trees (under GTR 
model)





. . .

Analyze
separately

Summary Method

Main Approaches for Species Tree Estimation under ILS 

gene 1 gene 2 … gene k

. . .
Concatenation

Sp
ec

ie
s

e.g., RAxML

e.g., ASTRAL



ASTRAL 
[Mirarab, et al., ECCB/Bioinformatics, 2014]

• Optimization Problem (NP-Hard):

• Theorem: Statistically consistent under the multi-
species coalescent model when solved exactly
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Find the species tree with the maximum number of induced 
quartet trees shared with the collection of input gene trees

Set of quartet trees 
induced by T

a gene tree

Score(T ) =
X

t2T
|Q(T ) \ Q(t)|

all input gene trees





Figure by Luay Nakhleh, TREE 2013

The species tree has one 
duplication (at the root), 
which produces a gene 
family tree that has two 
copies of the species tree!

Multi-copy trees: MUL-trees

Gene Family Trees
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Problem: Given set of MUL-trees, infer the species tree

FastMulRFS 7

Y

A B C D

(a) Species tree T ⇤

dup

D

Y1

A1 B1 C1

Y2

A2 B2 C2

(b) Gene tree M1 with one duplication.

dup

D

Y1

A1 X C1

Y2

A2 B2 X

(c) Gene tree M2 with one duplication
and two losses.

dup

D

Y1

A1 X C1

Y2

X B2 X

(d) Gene tree with one duplication and
three losses.

Fig. 2: Impact of gene duplications and losses on species tree estimation

using RFS-multree methods. Subfigure (a) shows a species tree T
⇤ and

subfigures (b) through (d) show three gene family trees that evolved within
the species tree. Subfigure (b) shows gene family tree M1 with a duplication
event in species Y (i.e., the most recent common ancestor of species A, B, and
C). Note that all edges in M1 below the duplication node (shown in red) fail
to induce bipartitions and so will be contracted, and will therefore not impact
the solution space for the RFS-multree criterion. Subfigure (c) shows gene tree
M2 with a duplication event in species Y followed by the first copy of the gene
being lost from species B and the second copy of the gene being lost from
species C. Because one of the species that evolved from Y retains both copies of
the gene, the non-trivial edges in M2 below the duplication node fail to induce
bipartitions, and so these edges also do not impact the solution space for RFS-
multree. Subfigure (d) shows gene family tree M3 with a duplication event in
species Y followed by the first copy of the gene being lost from species B and
the second copy of the gene being lost from both species A and C. None of the
species that evolved from Y retain both copies of the gene, so all edges below the
duplication node induce bipartitions and hence will not be contracted; we refer
to this situation as “adversarial gene duplication and loss,” because it produces
bipartitions in the singly-labeled trees in PX that conflict with the species tree
(shown in blue). Such a scenario leads to the possibility that the true species
tree may not be an optimal solution to the RFS-multree problem.

Note: no orthology 
detection 



Species tree estimation under GDL

Options:
1. Throw out multi-copy genes
2. Figure out orthology
3. Run methods (like gene tree parsimony) that combine gene 

family trees into a species tree

Nothing proven to be statistically consistent under GDL… until 
2019



Theorem (Legried, Molloy, Warnow, and 
Roch, 2019): ASTRAL-multi is statistically 
consistent under GDL and runs in 
polynomial time.

Theorem (Molloy and Warnow, 2019): 
FastMulRFS is statistically consistent under a 
generic duplication-only or loss-only model, and 
runs in polynomial time.

Note: Both methods use dynamic programming 
to solve NP-hard discrete optimization problems 
within constrained search space in polynomial 
time.

Theorem: Under GDL,  most probable quartet tree is the species tree



ASTRAL-Pro: Estimating species trees from 
gene family trees



ASTRAL-pro

• Input: Set of unrooted multi-copy gene family trees (mul-trees)
• Output: Species tree

• Step 1: ”root and tag” every mul-tree
• Step 2: Use the rooting to define “speciation quartets”
• Step 3: Run ASTRAL’s DP algorithm with modified weights, reflecting 

speciation quartets

Theorem: ASTRAL-pro is statistically consistent if it correctly roots-and-
tags every mul-tree



DISCO (Willson et al., Syst. Biol. 2022)

• Input: Set of gene family trees
• Output: Set of single copy gene trees (obtained by decomposing gene 

family trees)
• Technique:

• Use ASTRAL-Pro to root and tag each gene family tree
• Decompose from the “bottom-up”, aiming to keep at least one large subtree
• Follow with method that requires single-copy genes (e.g., ASTRAL, ASTRID, 

Concatenation Analysis using maximum likelihood)

• Variants we examined: ASTRID-DISCO, ASTRAL-DISCO, CA-DISCO



Results on 101 species with GDL and ILS



Results on 1000 species and 1000 genes



Rooting species trees

• QR-STAR (Tabatabaee et al.) is a 
statistically consistent method for 
rooting species trees when ILS is 
present, and uses the unrooted gene 
trees

• DISCO+QR-STAR (Willson et al.) 
combines DISCO and QR-STAR to root 
species trees when ILS and GDL are 
present, and uses the unrooted gene 
trees



Summary for species tree estimation

• If ILS but no GDL, then ASTRAL, ASTRID, and concatenation are all 
good (choice depends on data). 

• Not shown: FASTRAL and GTM can speed up ASTRAL
• If GDL as well, then ASTRID-DISCO or ASTRAL-Pro are good summary 

methods, and CA-DISCO (CA=RAxML on concatenated alignment) is 
excellent if runtime permits.  

• Note: no need to determine orthology – can use all your data!
• For rooting species trees:  

• If ILS but no GDL, then QR-STAR
• If ILS and GDL, then STRIDE is good if ILS is low enough; otherwise, DISCO+QR 

is good 



New software for phylogenomics

• New MSA methods: MAGUS, WITCH, WITCH-ng, HMMerge, EMMA
• Some can be used to add sequences into alignments
• MAGUS excellent if low sequence length heterogeneity

• New phylogenetic placement methods
• SCAMPP and BATCH-SCAMPP

• New maximum likelihood gene tree estimation:
• GTM pipeline (divide-and-conquer)

• New species tree estimation methods:
• ASTRAL (for species trees under ILS)
• ASTRAL-Pro (for species trees under GDL and ILS)
• ASTRID-DISCO and CA-DISCO (for species trees under GDL and ILS)

• Species tree rooting methods: QR-STAR



Overall summary

• Large-scale phylogenetic tree estimation is becoming truly feasible!
• Large numbers of sequences no longer a major impediment
• Heterogeneity across the genome presents challenges, but methods are being 

developed that address biological heterogeneity

• Not discussed here (and still needs work): 
• Phylogenetic networks
• Genome rearrangement phylogeny
• Multiple whole genome alignment
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