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Phylogenomics
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Phylogeny + genomics = genome-scale phylogeny estimation



Phylogenomic pipeline

Select taxon set and markers
Gather and screen sequence data, possibly identify orthologs
Compute multiple sequence alignments for each locus, and construct gene trees

Compute species tree or network:
 Combine the estimated gene trees, OR

* Estimate a tree from a concatenation of the multiple sequence alignments
Get statistical support on each branch (e.g., bootstrapping)
Estimate dates on the nodes of the phylogeny

Use species tree with branch support and dates to understand biology
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Phylogenomic pipeline

Select taxon set and markers
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FIGURE 1. Summary workflow. Overview of steps taken by the
PAFTOL project to generate Data Release 1.0 of the Kew Tree of Life
Explorer (https:/ /treeoflife. kew.org). The stages of the workflow are
further elaborated in Figs. 2—4.



Phylogenomic pipeline
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Figure 2, from Syst. Biol. 71(2):301-319, 2022
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2014 PNAS study: 103 plant transcriptomes, 400-800 single copy “genes”

o 2019 Nature study: much larger!

Major Challenges:
e Large alignments (and sequence length heterogeneity)

* Multi-copy genes omitted (9500 -> 400)
* Massive gene tree heterogeneity consistent with ILS
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Avian Phylogenomics Project

Erich Jarvis, MTP Gilbert, Guojie Zhang, Siavash Mirarab, Tandy Warnow,
HHMI Copenhagen BGI Texas Texas and UIUC

SRR

* Approx. 50 species, whole genomes

* 14,000 loci

* Multi-national team (100+ investigators)

8 papers published in special issue of Science 2014

Major challenges:

* Multi-copy genes omitted

* Massive gene tree heterogeneity consistent with ILS
* Concatenation analysis took 250 CPU years




Large datasets are difficult

* Two dimensions:
* Number of loci
* Number of species (or individuals)

* Missing data
* Heterogeneity

* Many analytical pipelines involve Maximum likelihood
and Bayesian estimation



This talk

* Part I: New methods for multiple sequence alignment

* Part Il: New methods for maximum likelihood phylogenetic placement
e Part lll: New methods for maximum likelihood tree estimation

e Part IV: New methods for species tree estimation

Some of this work is Not Yet Published (NYP), but all the codes
described are available in open-source form on github

Please contact me if you wish to collaborate!



Part I: Multiple sequence alignment

* Aligning large datasets:
» SATé (2009), PASTA (2014), MAGUS (2021) and recursive MAGUS (2022)

* Constructing alignments with sequence length heterogeneity:

* UPP (2015), WITCH (2022), WITCH-ng (2023), UPP2 (2023), HMMerge (2023),
and EMMA (NYP)

* These methods can also be used to add sequences into an existing alignment

N

Smirnov Shen Liu Park
MAGUS WITCH, EMMA WITCH-ng HMMerge, UPP2



MAGUS - Highly Accurate Multiple Sequence Alighment for large datasets

HomFam Average Alignment Error
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Smirnov V (2021) Recursive MAGUS: Scalable and accurate multiple sequence alignment. PLOS Computational Biology 17(10): e1008950.
https://doi.org/10.1371/journal.pcbi.1008950
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008950



https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008950

Part II: Phylogenetic placement

* Adding aligned sequences into a tree

* Applications:
* Taxonomic identification of reads in metagenomics and microbiome analysis
* Updating large trees



Phylogenetic Placement

Phylogenetic placement problem: Given a query sequence and multiple
sequence alignment, determine the placement into an existing reference tree.

S1 = -AGGCTATCACCTGACCTCCA-AA

S2 = TAG-CTATCAC--GACCGC--GCA 51 52
S3 = TAG-CT------- GACCGC--GCT \ /
S4 = TAC----TCAC--GACCGACAGCT

QL = ------- T-A--AAAC-------- / \

S4 S3



Phylogenetic Placement

Phylogenetic placement problem: Given a query sequence and multiple
sequence alignment, determine the placement into an existing reference tree.

S1 = -AGGCTATCACCTGACCTCCA-AA
S2 = TAG-CTATCAC--GACCGC--GCA 51 52
S3 = TAG-CT------- GACCGC--GCT
S4 = TAC----TCAC--GACCGACAGCT

N
QL = ------- T-A--AAAC-------- /\ \

S3
S4 01




Existing Methods for Phylogenetic Placement

Maximum likelihood methods (expensive to run):

o pplacer (Matsen et al., 2010) is currently the most accurate method, but fails on
large trees (e.g., some with 4000 leaves)

e EPA-ng (Barbera et al., 2019), designed for speed with large numbers of query
sequnces, but can fail on trees with 10,000 or more leaves

Distance-based methods:

e APPLES-2 (Balaban et al., 2021), one of the only methods that can place onto
large backbone trees (200K sequences)

Other methods haven’t been as scalable as APPLES-2 or as accurate or as accurate as
pplacer/EPA-ng



SCAMPP Framework (Wedell et al., TCBB 2022)

Used with selected phylogenetic placement method (e.g., pplacer or

Input: Backbone tree with branch lengths, alignment and aligned query
sequences, and a subtree size.

o Stage 1- Extract placement subtree of 2000 leaves from backbone tree

o Stage 2 - Use pplacer to find edge in placement subtree and location and
distal length along placement edge.

o Stage 3 - Find edge in backbone tree using branch lengths.

17



Placing short sequences: SCAMPP accuracy, scalabilty, and speed
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(a) Short fragments (average length 154)

APPLES-2 has high error when placing fragmentary sequences
SCAMPP enables maximum likelihood methods to place into very large trees (200K sequences)

Runtime (per sequence!) and memory usage increases with backbone tree size

Delta-error decreases with the backbone tree size: beneficial impact of increased taxon sampling!



Batch-SCAMPP (NYP) : Placing many short sequences

Table 3 Testing Data Results for Method Comparison on RNASim (50,000 sequences in the
backbone tree with 10,000 fragmentary query sequences).

RNASim
Method || Delta Error | Runtime (minutes) | Memory (GB)
BSCAMPP(e) 0.50 7.2 3.0
SCAMPP(e) 0.51 466.0 1.2
SCAMPP(p) 0.46 1421.3 0.2
APPLES-2 1.52 4.8 1.1
EPA-ng X X X

BATCH-SCAMPP (NYP) is a modified version of SCAMPP that is designed for use with EPA-ng, which scales
sublinearly with number of query sequences, but cannot place into large trees

Note:

® APPLES-2 is very fast (uses parallelism well) and has low memory requirement, but has much higher
Elacemen_t error than Batch-SCAMPP(EPA-ng)

® EPA-ng fails to run on this backbone tree




Batch-SCAMPP: Scalability with number query sequences
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APPLES-2 is very fast and has low memory requirement, but has much higher placement error
than Batch-SCAMPP(EPA-ng)

BSCAMPP(EPA-ng) runtime is sublinear with number of query sequences




Part Ill: Large-scale maximum likelihood trees



Markov Models of Sequence Evolution

The different sites are assumed to evolve i.i.d. down the model tree, so it suffices to
model a single site

Jukes-Cantor, 1969 (simplest DNA site evolution model):

* The state at the root is randomly drawn from {A,C,T,G} (nucleotides)

* The model tree T is binary and has substitution probabilities p(e) on each edge e,
with O<p(e)<3/4

* If a site (position) changes on an edge, it changes with equal probability to each of
the remaining states

* The evolutionary process is Markovian.

More complex models are also considered, often with little change to the theory.



Maximum likelihood for gene tree estimation

* Theory:
* Statistically consistent

* Low sample complexity (Roch & Sly, Prob. Theory and Related Fields, 2017):
phase transition (logarithmic then polynomial)

e NP-hard

* Empirical (based on heuristics) — using RAXML (leading ML heuristic)
* Outstanding accuracy on simulated data

* Challenging on large datasets (best methods can take CPU years or fail to run
on large datasets)



Divide-and-Conquer using Disjoint Tree Mergers

Note: use most
accurate method
Deco.mpose' on subsets, and
species Sgt 'Infto treat as absolute
pairwise disjoint constraints

Full subsets.
species
set

Build a tree on each
subset

NDUIETRY
Info A A
(e.g;]::fitxa)nce AAA AA

Compute tree on entire set of species
using “Disjoint Tree Merger” method

Erin Molloy,
Introduced this
approach



Divide-and-Conquer Gene Tree Estimation

Note: use most
accurate method
Deco.mpose' on subsets, and
species se"t }nfto treat as absolute
o gjg;velfse disjoint constraints

species
set
~ |RAXML,
Build a tree on each | IQ-TREE,
subset etc

NDUIETRY
Info A A
(e.g;;::\:itxa)nce AAA AA

Compute tree on entire set of species . c
using “Disjoint Tree Merger” method G u Ide Tree M erger
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What about maximum likelihood score?

* We used the same technique but evaluated maximum likelihood
scores on an EMMA alignment of a large biological dataset (protein
sequences) from Kelly Williams with approximately 70,000
sequences, restricting the alignment to approximately 1000 sites.

* We let RAXML run under varying conditions: its default approach,
using FastTree as a starting tree, and using our GTM tree as a starting
tree.

* We compared these RAXML runs (different starting trees) to each
other, using LG+Gamma(4) for the model



ML score
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ML score
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Part [V: Species Tree Estimation

Orangutan Gorilla

B

From the Tree of the Life Website,
University of Arizona



(Gene tree discordance

m T Multiple causes for discord,

—a including

};:"'_j';*"-f b " T *M'“__ * Incomplete Lineage Sorting

) A LN SN ‘:!‘-! s J_,!‘ (ILS),

QAR PO SR  Gene Duplication and Loss
| gene 1| | gene1000 (GDL), and

/& A * Horizontal Gene Transfer (HGT)

Gorilla Human Chimp Orang. Gorilla Chimp Human Orang.



Is method M statistically consistent under
model G7?

Question answered by
mathematical proof

Error
in species tree

inferred by
method M

Amount of data
generated under model G and
then given to method M as input



Genome-scale data?

error

Length of the genome



(Gene tree discordance

Gorilla Human Chimp Orang.

| gene1000

AN

Gorilla Chimp Human Orang.

Multiple causes for discord,

including

* |Incomplete Lineage Sorting
(ILS),

* Gene Duplication and Loss
(GDL), and

* Horizontal Gene Transfer (HGT)



MSC+GTR Hierarchical Model

Species tree

1. Gene trees evolve
within the species

Gorilla Human  Chimp Orangutan

P P . N tree (under the
Gene evolution model : :
- - . < Multi-Species
Gene tree Gene tree Gene tree Gene tree Coalescent mode|)
A /<\ 2. Sequences evolve
) Human Orang. Qrang- Chimp Orang. ' Orang.
Chimp Gorilla Gorilla Huma] Chimp Human Gorilla Chimp  Human down the gene
I I I
Sequence evolution model trees (under GTR
v S v S v model)
ACTGCACACCG CTGAGCATCG 1 AGCAGCATCGTG CAGGCACGCACGAA
ACTGC-CCCCG CTGAGC-TCG AGCAGC-TCGTG AGC-CACGC-CATA
AATGC-CCCCG ATGAGC-TC- AGCAGC-TC-TG ATGGCACGC-C-TA

-CTGCACACGG CTGA-CAC-G C-TA-CACGGTG AGCTAC-CACGGAT



Traditional approach: concatenation

supermatrix

et AN 129521 peceeceeeeeeesseessnessd :

: gene 1 i gene?2 : : gene 1000 : ___ Phylogeny _’
ACTGCACACCGCTGAGCATCG CAGAGCACGCACGAA inference
ACTGC~-CCCCGCTGAGC~TCG AGCA~-CACGC~CATA

AATGC-CCCCGATGAGC-TC~- * " * * ATGAGCACGC~-C-TA

-CTGCACACGGCTGA~-CAC-G AGC-TAC-CACGGAT

« Statistically inconsistent and can even
be positively misleading (proved for

unpartitioned maximum likelihood)
[Roch and Steel, Theo. Pop. Gen., 2014]

* Mixed accuracy in simulations
[Kubatko and Degnan, Systematic Biology, 2007]
[Mirarab, et al., Systematic Biology, 2014]

Orangutan

Chimpanzee

Gorilla Human
Error
A
Data



Main Approaches for Species Tree Estimation under ILS

gene 1 gene2... genek

Species

—_— e.g., RAxXML

Concatenation

Analyze
separately

—

e.g., ASTRAL

%

|
M-

> —

Summary Method



ASTRAL

[Mirarab, et al., ECCB/Bioinformatics, 2014]

e Optimization Problem (NP-Hard):

Find the species tree with the maximum number of induced

quartet trees shared with the collection of input gene trees

Set of quartet trees
induced by T

Score(T) = 3 IQ(T) N Q)

a gene tree :
all input gene trees

 Theorem: Statistically consistent under the multi-
species coalescent model when solved exactly

15



ASTRAL on biological datasets

. . _ Dissecting Molecular Evolution in the Highly Diverse Plant
1KP: 103 plant species, 400-800 genes Clade Caryophyllales Using Transcriptome Sequencing

Yang, et al. 96 Caryophyllales species, 1122
genes

Iy Ot Uererairy Porsa, o beald o The Sty o Sosbermatn Bagmin. A righis reservend
s e sty ey

Dent”’]ger' et al . 39 mu Sh room s peC | e€s, 208 m eLIFE The Challenges of Resolving a Rapid, Recent Radiation: Empirical and Simulated

Phylogenomics of Philippine Shrews

genes
Nuclear genomic signals of the
. ‘microturbellarian’ roots of platyhelminth
Giarla and Esselstyn. 19 Philippine shrew evolutionary Innovation T o
species, 1112 genes Chutopher € Loumar™, Andesas Hojf, Gonssl Giiber

Contents kats avaiabie st S oot

Laumer, et al. 40 flatworm species, 516 genes

Molecular Phylogenetics and Evolution

journal www.elsevior yme

Grover, et al. 8 cotton species, 52 genes
Re-evaluating the phylogeny of allopolyploid Gossypium L.

Hosner, Braun, and Kimball. 28 quail Species, g o o catusner Joset ). jrcaek” Jsin T Pae” Josbos A Ul

11 genes W Land connectivity changes and global
cooling shaped the colonization history
and diversification of New World quail
(Aves: Galliformes: Odontophoridae)

Peter A. Howner™, Edward L. Braun'*" and Rebeca 1. Kirshal

Simmons and Gatesy. 47 angiosperm
species, 310 genes LETTER

: . A comprehensive phylogeny of birds (Aves) using
Prum et al, 198 avian species, 259 genes targeted next- genemm DNA sequencing

Richasd ¢
Emily Wee

04 10 3038 nature 1 497
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Gene Family Trees

(A)  Gene Gene The species tree has one
duplication tree
duplication (at the root),
Olb Cla b, .
which produces a gene
family tree that has two
/\ copies of the species tree!
A C

Multi-copy trees: MUL-trees

Figure by Luay Nakhleh, TREE 2013
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e 2014 PNAS study: 103 plant transcriptomes, 400-800 single copy “genes”
e 2019 Nature study: much larger!

Major Challenges:
* Multi-copy genes omitted (9500 -> 400)
* Massive gene tree heterogeneity consistent with ILS




Problem: Given set of MUL-trees, infer the species tree

e

A B C D Bi CqiA Co D

Note: no orthology
detection

(a) Species tree T* (b) Gene tree M; with one duplication.

A1 C1 A2 82 D A1 C-| Bz D

(c) Gene tree My with one duplication (d) Gene tree with one duplication and
and two losses. three losses.



Species tree estimation under GDL

Options:
1. Throw out multi-copy genes
2. Figure out orthology

3. Run methods (like gene tree parsimony) that combine gene
family trees into a species tree



Theorem (Legried, Molloy, Warnow, and
Roch, 2019): ASTRAL-multi is statistically
consistent under GDL and runs in
polynomial time.

Theorem: Under GDL, most probable quartet tree is the species tree




ASTRAL-Pro: Estimating species trees from
gene family trees

MoLECULAR B1oLOoGY ano EVOLUTION
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Article Navigation

ASTRAL-Pro: Quartet-Based Species-Tree Inference despite Paralogy 3

Chao Zhang, Celine Scornavacca, Erin K Molloy, Siavash Mirarab

Molecular Biology and Evolution, Volume 37, Issue 11, November 2020, Pages 3292-3307, https://doi.org/10.1093/molbev/msaal39
Published: 04 September 2020



ASTRAL-pro

* Input: Set of unrooted multi-copy gene family trees (mul-trees)
* Output: Species tree

e Step 1: “root and tag” every mul-tree
» Step 2: Use the rooting to define “speciation quartets”

e Step 3: Run ASTRAL’s DP algorithm with modified weights, reflecting
speciation quartets



DISCO (Willson et al., Syst. Biol. 2022)

* Input: Set of gene family trees

e Output: Set of single copy gene trees (obtained by decomposing gene
family trees)

e Technique:
* Use ASTRAL-Pro to root and tag each gene family tree
* Decompose from the “bottom-up”, aiming to keep at least one large subtree

* Follow with method that requires single-copy genes (e.g., ASTRAL, ASTRID,
Concatenation Analysis using maximum likelihood)

e Variants we examined: ASTRID-DISCO, ASTRAL-DISCO, CA-DISCO



Results on 101 species with GDL and ILS
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Results on 1000 species and 1000 genes
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Figure 4. Species tree error (Robinson—Foulds (RF) error rates), wall clock running time (s) and peak memory usage of ASTRAL-Pro, ASTRID-DISCO and SpeciesRax
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Summary for species tree estimation

 |If ILS but no GDL, then ASTRAL, ASTRID, and concatenation are all
good (choice depends on data).
* Not shown: FASTRAL and GTM can speed up ASTRAL

 If GDL as well, then ASTRID-DISCO or ASTRAL-Pro are good summary
methods, and CA-DISCO (CA=RAxML on concatenated alighnment) is
excellent if runtime permits.
* Note: no need to determine orthology — can use all your data!

* For rooting species trees:
* If ILS but no GDL, then QR-STAR

* If ILS and GDL, then STRIDE is good if ILS is low enough; otherwise, DISCO+QR
is good



New software for phylogenomics

New MSA methods: MAGUS, WITCH, WITCH-ng, HMMerge, EMMA

* Some can be used to add sequences into alignments
* MAGUS excellent if low sequence length heterogeneity

New phylogenetic placement methods
* SCAMPP and BATCH-SCAMPP

New maximum likelihood gene tree estimation:
* GTM pipeline (divide-and-conquer)

New species tree estimation methods:
» ASTRAL (for species trees under ILS)
» ASTRAL-Pro (for species trees under GDL and ILS)
» ASTRID-DISCO and CA-DISCO (for species trees under GDL and ILS)

* Species tree rooting methods: QR-STAR



Overall summary

 Large-scale phylogenetic tree estimation is becoming truly feasible!
e Large numbers of sequences no longer a major impediment

* Heterogeneity across the genome presents challenges, but methods are being
developed that address biological heterogeneity

* Not discussed here (and still needs work):
* Phylogenetic networks
* Genome rearrangement phylogeny
* Multiple whole genome alignment
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