CS 173, Lecture A Introduction to Logic, Sets, Graphs, and Functions Tandy Warnow

1 Today's material

- Introduction to proofs by contradiction
- Introduction to sets (notation, operations, terminology)
- Introduction to logic (propositions, predicates, quantifiers, operations)
- Introduction to graphs (terminology)
- Introduction to function notation and recursively defined sets and functions
- Satisfiability and Conjunctive Normal Form
- Truth Tables

2 Proofs

- You want to prove that some statement A is true.
- You can try to prove it directly, or you can prove it indirectly? we will show examples of each type of proof.

Example of Direct Proof Theorem: Every odd integer is the difference of two perfect squares. (In other words, \forall odd integers x, $\exists y, z$ integers such that $x = y^2 - z^2$.)

Note: $\forall x$ is the same as "for all x" and $\exists x$ is the same as "there exists an x".

Example of Direct Proof Theorem: Every odd integer is the difference of two perfect squares. (Put more formally \forall odd integers x, $\exists y, z$ integers such that $x = y^2 - z^2$.)

Proof: Since x is odd, there is an integer L such that x=2L+1. Note that $(L+1)^2=L^2+2L+1$ Hence $(L+1)^2-L^2=x$ Q.E.D.

Proof by contradiction Theorem: $\sqrt{7}$ is irrational.

Proof by contradiction.

If $\sqrt{7}$ is rational, then by definition \exists integers a, b such that $\frac{a}{b} = \sqrt{7}$.

Without loss of generality, we will assume a and b are relatively prime (where relatively prime means that they have no common factors greater than 1).

Therefore $a^2 = 7b^2$ (Arithmetic)

Hence 7 divides a^2 (Because $a^2 = 7b^2$, and 7 divides $7b^2$)

Because 7 is prime, this implies that 7 divides a

But then 7^2 divides a^2 (obvious)

and so 7^2 divides $7b^2$ (because $a^2 = 7b^2$)

And so 7 divides b^2 (obvious)

Because 7 is prime, this implies that 7 divides b

Hence 7 is a common divisor of both a and b, which contradicts our earlier assumption.

Note that 7 being prime was important in the proof.

We said that if 7 divides a^2 then 7 divides a, and we used that 7 is prime.

This was necessary since it doesn't hold that if 4 divides a^2 then 4 divides a (e.g., let a=6).

Here's a longer justification for why 7 must divide a if 7 divides a^2 .

Remember that every integer greater than 1 has a unique prime factorization.

So let the prime factorization of a be:

$$a = \prod_{i=1}^{k} p_i^{l_i}$$

where p_i is a prime and l_i is a positive integer.

Hence the unique prime factorization of a^2 must be

$$a^2 = \prod_{i=1}^k p_i^{2l_i}$$

If 7 divides a^2 then $7 = p_i$ for some $i, 1 \le i \le k$. (the definition of saying that 7 divides a^2)

Hence 7 is one of the prime factors for a, and so 7 divides a.

Class exercise Prove that $\sqrt{5}$ is irrational.

3 Introduction to Sets

A set S is just a collection of objects.

Some sets are finite (e.g., $\{1, 2, 3, 5\}$) and some are infinite (e.g., the set \mathbb{Z} of integers).

We can specify a set explicitly, as in $\{1,2,3,5\}$, or implicitly using "set-builder notation?":

• $\{x \in \mathbb{Z} | 0 < x < 6, x \neq 4\}$

Note that $\{x \in \mathbb{Z} | 0 < x < 6, x \neq 4\} = \{1, 2, 3, 5\}.$

The emptyset is denoted by \emptyset or by $\{\}$, and is the set that has no elements.

Terminology We write $x \in A$ to indicate that x is an element of set A. For example, $5 \in \mathbb{Z}$.

We write $x \notin A$ to indicate that x is not an element of A. For example, $\sqrt{7} \notin \mathbb{Z}$.

We say that a set A is a subset of B if every element of A is an element of B. This is denoted $A \subseteq B$. For example, $\mathbb{Z} \subseteq \mathbb{R}$, where \mathbb{Z} denotes the set of integers and \mathbb{R} denotes the set of real numbers.

The intersection and unions of sets A and B are represented using $A \cap B$ and $A \cup B$, respectively.

The set difference between sets A and B is denoted $A \setminus B$, and is the set $\{x \in A | x \notin B\}$.

The number of elements in a set A (also called its cardinality) is denoted by |A|.

Set builder notation Let \mathbb{Z} denote the integers and \mathbb{R} denote the real numbers. What are these sets?

- $A = \{f : \mathbb{Z} \to \{1, 2, 3\}\}$
- $B = \{x \subseteq \{0, 1, 2, 3\} | 1 \in x\}$
- $C = \{x \subseteq \mathbb{Z} | |x| \le 2\}$
- $D = \{f : \mathbb{R} \to \mathbb{R} | \forall x (f(x) = f(0)) \}$

- $E = \{x \in \mathbb{Z} | x > 0\}$
- $F = \{x \in \mathbb{Z} | x 1 \in \mathbb{Z}\}$
- $G = \{x \in \mathbb{Z} | x^2 < x\}$

Another proof by contradiction Theorem: Let $A \subseteq \mathbb{Z}$ be finite and satisfy

• If $x \in A$ then $x + 1 \in A$

Then $A = \emptyset$.

Proving $A = \emptyset$ Recall that we assume A is a finite set of integers and satisfies $x \in A \to x + 1 \in A$. We first show that A cannot be non-empty, and then we show that $A = \emptyset$ satisfies the constraint.

- If A is finite but non-empty, then it has n elements, and so $A = \{x_1, x_2, \ldots, x_n\}$. Let y be the maximum element of A. Since $y \in A$, it follows that $y+1 \in A$. But y+1 is bigger than every element of A, which is a contradiction. Hence, A cannot be non-empty.
- On the other hand, does $A = \emptyset$ satisfy the required property:
 - If $x \in A$ then $x + 1 \in A$

Yes, because an "IF-THEN" statement is true whenever the first half is false. And $x \in \emptyset$ is always false.

4 Introduction to Graphs

Graphs are objects with vertices and edges. We write this as G = (V, E), so V is the set of vertices and E is the set of edges. Every edge is an un-ordered pair of vertices.

A graph is simple if it has no self-loops or parallel edges.

The degree of a node v, denoted deg(v), is the number of edges incident with it.

deg(1) = 2

 $\deg(2) = 3$

 $\deg(3) = 2$

 $\deg(4) = 3$

deg(5) = 3

deg(6) = 1

The number of nodes of odd degree is 4.

Theorem: Every finite simple graph has an even number of vertices of odd degree.

Proof: Every edge connects two vertices. Hence, SUM (the sum of the degrees in a graph) is always even (Handshaking Theorem).

Let ODD denote the set of vertices of odd degree and EVEN denote the set of vertices of even degree.

$$SUM = \sum_{v \in ODD} deg(v) + \sum_{v \in EVEN} deg(v)$$

Since SUM is even and $\sum_{v \in EVEN} deg(v)$ is even, $\sum_{v \in ODD} deg(v)$ must also be even. But then |ODD| is even! Q.E.D.

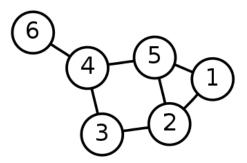


Figure 1: Graph with 6 vertices, public domain figure taken from https://en.wikipedia.org/wiki/Graph_(discrete_mathematics),

5 Introduction to Logic

Topics:

- Logical variables (items that can be true or false)
- Propositions (statements that are true or false)
- Predicates (statements that are true or false, but depend on the variables)
- Quantifiers (for all, there exists)
- AND, OR, XOR
- If-then
- if-and-only-if
- Negation
- Simplifying logical expressions
- Conjunctive Normal Form
- Tautologies
- Satisfiability

Quantifiers: For all (\forall) and There Exists (\exists) A proposition is either True or False. Which of these statements are True?

- $\forall x \in \emptyset, x > 0$
- $\exists x \in \emptyset, x > 0$
- $\exists x \in \emptyset$
- All flying elephants eat pizza
- There exists a flying elephant that eats pizza
- There exists a flying elephant
- No flying elephant eats pizza
- For all flying elephants x, x does not eat pizza

Order of quantifiers matters! We write "s.t." for "such that". Now, think about these two statements:

- $\forall x \in \mathbb{Z} \ \exists y \in \mathbb{Z} \ s.t. \ x > y$
- $\exists y \in \mathbb{Z} \ s.t. \ \forall x \in \mathbb{Z}, \ x > y$

Is either of these statements true?

Predicates Some logical statements depend on variables. Consider:

- Let P(x) denote the statement " $x \in \mathbb{Z}$ ". Is P(3) true? Is $P(\sqrt{7})$ true?
- Let Q(x,y) denote the statement "|x| > |y|". Is $Q(\{3,5\},\mathbb{Z})$ true? Is $Q(\mathbb{Z},\emptyset)$ true?
- Let R(x) denote the statement " $0 \in x$ ". Give an example of x for which R(x) is false.

Reading Mathematics Let G = (V, E) denote a graph.

What do the following statements mean?

- 1. $\forall v \in V, \exists y \in V s.t. (v, y) \in E$
- 2. $\exists y \in V \ s.t. \ \forall v \in V \setminus \{y\}, \ (v,y) \in E$
- 3. $\forall \{a, b\} \subseteq V, (a, b) \in E$

Give an example of a graph that satisfies each statement.

Find an example of graph that satisfies exactly one of these statements.

AND, OR, and XOR Suppose A and B are propositions (and hence are either true or false).

 $A\ AND\ B$ (i.e., $A\wedge B$) is True if and only if both A and B are true. $A\ OR\ B$ (i.e., $A\vee B$) is True if and only if at least one of A and B is true. $A\ XOR\ B$ (i.e., $A\oplus B$) is True if and only if exactly one of A and B is true. Examples:

- All flying elephants eat pizza OR State Island is a borough in New York City
- All flying elephants eat pizza AND State Island is a borough in New York City
- All flying elephants eat pizza XOR State Island is a borough in New York City

If-then IF A THEN B (sometimes denoted $A \to B$, and worded as "A implies B") is the same as:

- whenever A is True, B must be True
- It isn't possible for B to be False if A is True

So, how would you show that "IF A THEN B" is False?

If-then statements Key point: IF A THEN B is only False if A is True and B is False!

In other words,

$$A \to B \equiv \neg (A \land \neg B) \equiv \neg A \lor B$$

where $\neg X$ is the same as "not X".

When is an IF-THEN statement true? Which of the following statements are true?

- 1. IF $(0 \in \emptyset)$ THEN (Obama is still president)
- 2. IF $(0 \notin \emptyset)$ THEN (Obama is still president)
- 3. IF(all flying elephants eat pizza) THEN (Obama is still president)
- 4. IF(no flying elephants eat pizza) THEN (Obama is still president)
- 5. IF (some flying elephant eats pizza) THEN (Obama is still president)

NOT X $(\neg X)$ $\neg X$ is True if and only if X is False.

Can we simplify these?

- ¬ (A OR B)
- ¬ (A AND B)
- ¬ (IF A THEN B)
- ¬ (A XOR B)

Logic exercises

- Simplifying logical expressions, and seeing when two logical expressions are equivalent
- Determining if a logical expression can be satisfied
- Expressing English statements in logic

Simplifying logical expression Objectives:

- Remove all unnecessary parentheses
- Remove all \rightarrow or \leftrightarrow

Hence, you need to be able to simplify expressions like

$$\neg(a \to b) \lor (\neg b)$$

Simplifications (warm-up) When A and B are logical expressions, and you say $A \equiv B$, you mean that they have the same truth values. (You can also write this as $A \leftrightarrow B$.)

For example:

- $\neg \neg x \equiv x \text{ (obvious)}$
- $x \lor (x \land y) \equiv x$

Similarly, you can write $x \lor (x \land y) \leftrightarrow x$. In other words, $x \lor (x \land y)$ is true if and only if x is true.

• $x \vee \neg x \equiv T$

In other words, $x \vee \neg x$ is always true, no matter what x is.

• $x \land \neg x \equiv F$

In other words, $x \wedge \neg x$ is never true, no matter what x is.

De Morgan's Laws

• Negation of $A \wedge B: \neg A \vee \neg B$

This is also written as

$$\neg (A \land B) \equiv \neg A \lor \neg B$$

or as

$$\neg (A \land B) \leftrightarrow \neg A \lor \neg B$$

• Negation of $A \vee B$: $\neg A \wedge \neg B$

This is also written as

$$\neg (A \lor B) \equiv \neg A \land \neg B$$

or as

$$\neg (A \lor B) \leftrightarrow \neg A \land \neg B$$

Negation, warm up with quantifiers

• Negation of $\forall x \in S, P(x)$:

$$\exists x \in S \text{ s.t. } \neg P(x)$$

Negation of $\exists x \in S \text{ s.t. } P(x)$

$$- \forall x \in S, \neg P(x)$$

Consider the expression

$$A \to B$$

To negate this, we have:

$$\neg (A \to B)$$

$$\equiv \neg (\neg A \lor B)$$

$$\equiv \neg \neg A \land \neg B$$

$$\equiv A \land \neg B$$

Our next example is a bit harder. Negate: $(x \to y) \land \neg x$ First Solution:

$$\neg[(x \to y) \land \neg x]$$

$$\equiv \neg(x \to y) \lor \neg \neg x$$

$$\equiv \neg(\neg x \lor y) \lor x$$

$$\equiv (\neg \neg x \land \neg y) \lor x$$

$$\equiv (x \land \neg y) \lor x$$

$$\equiv x$$

Second Solution: We begin by simplifying the expression above before negating it. Note that

$$x \to y \equiv \neg x \vee y$$

Hence

$$(x \to y) \land \neg x$$

$$\equiv (\neg x \lor y) \land \neg x$$

$$\equiv (\neg x \land \neg x) \lor (y \land \neg x)$$

$$\equiv \neg x \lor (y \land \neg x)$$

$$\equiv \neg x$$

Therefore,

$$\neg[(x \to y) \land \neg x] \equiv \neg \neg x \equiv x$$

Simplifying a logical expression Simplify this:

Solution:

 $A\ OR\ B$ is true when at least one of A or B is true. Hence it is false if and only if both A and B are false. In other words:

$$\neg (A \ OR \ B) \equiv \neg A \ AND \ \neg B$$

Simplify this:

• ¬ (A AND B)

Solution: A AND B is true when both A or B are true. Hence it is false if and only if at least one of A or B is false. In other words:

$$\neg (A \ AND \ B) \equiv \neg A \ OR \ \neg B$$

Note the effect of \neg : AND changes to OR and vice-versa, and X changes to $\neg X$.

Classroom exercise Simplify one or both:

- $\bullet \neg (A \ OR \neg B)$
- $\bullet \neg A \to A$

Satisfiability Some logical expressions can never be true, some are always true, and some depend on the values of their variables. T and F refer to the logical constants True and False, respectively. Examples:

- 1. $A \vee \neg A$ (always true)
- 2. $A \wedge \neg A$ (never true)
- 3. $A \vee B$ (sometimes true and sometimes false, depends on A and B)
- 4. $A \wedge F$ (never true)

Statements that are always true are called *tautologies*. Statements that can be true (or are always true) are said to be *satisfiable*, and otherwise they are said to be *unsatisfiable*.

Exercise: For each of the following expressions, determine if it is satisfiable or not satisfiable. If it is satisfiable, determine if it is a tautology.

- 1. $(A \land B) \to A$ (Answer: tautology)
- 2. $(A \wedge B) \rightarrow \neg A$ (Answer: satisfiable $(A = B = \mathbf{F})$ but not a tautology $(A = B = \mathbf{T})$)

- 3. $(A \land B) \leftrightarrow A$ (Answer: satisfiable (A = B = T) but not a tautology (A = T and B = F)
- 4. $(A \rightarrow B) \land A \land \neg B$ (Answer: not satisfiable, so never true)
- 5. $A \to \neg A$ (Answer: satisfiable $(A = \mathbf{F})$ but not a tautology $(A = \mathbf{T})$)

Truth Tables We (sometimes) use truth tables to check our analyses. Here's an example of a very simple truth table for the expression $A \wedge B$:

A	B	$A \wedge B$
Т	Τ	Т
Т	F	F
F	Т	F
F	F	F

A more complicated truth table Consider the expression $[(A \to B) \land \neg B] \to A$. Is this always true? Sometimes true and sometimes false? Always false? Let's use a truth table to answer this.

A	B	$(A \to B) \land \neg B$	$[(A \to B) \land \neg B] \to A$
Т	T	F	Т
Т	F	F	Т
F	Т	F	Т
F	F	Т	F

So the answer is that it is sometimes true and sometimes false. Note that we also showed $[(A \to B) \land \neg B] \to A \equiv A \lor B$.

Conjunctive Normal Form (CNF) A logical expression of the form

$$A_1 \lor A_2 \lor A_3 \lor \dots \lor A_k$$

where the A_i are literals (statement letters or their negations) is called a *disjunctive clause*.

Then

$$C_1 \wedge C_2 \wedge C_3 \wedge \ldots \wedge C_n$$
,

where each C_i is a disjunctive clause, is said to be in *conjunctive normal form*, or CNF.

CNF is very popular in computer science!

Two-satisfiability A special case of CNF is where each clause has at most two literals! That is, expression that are written in the form $(A_1 \vee B_1) \wedge (A_2 \vee B_2) \wedge \dots (A_k \vee B_k)$.

Which of the following CNF expressions are satisfiable?

- 1. $(x \lor y) \land (\neg x \lor \neg y)$
- 2. $(x \lor y) \land (\neg x \lor \neg y) \land x$
- 3. $(x \lor y) \land (\neg x \lor \neg y) \land x \land y$
- 4. $(x \lor y) \land (\neg x \lor \neg z) \land (\neg y \lor z) \land (\neg x \lor z)$
- 5. $(\neg x \lor y) \land (\neg y \lor z) \land (\neg z \lor x) \land (x \lor z)$

A logic puzzle In a particular village in the deep valleys in some far-away country, everyone is either a liar (and never tells the truth) or a truth-teller (and never lies).

You are in this village and meet Henry and Allen.

- Henry says "Allen is a truth teller"
- Allen says "Only one of us is a truth teller"

Is either a truth teller? If so, who?