These notes show two ways of proving theorems - one by induction and the other by contradiction.

Theorem 1: Let $F: \mathbb{Z}^{+} \rightarrow \mathbb{Z}$ be defined recursively by

- $F(1)=3$
- $F(n)=2 F(n-1)+1$ for $n \geq 2$

Then $F(n)>2^{n-1}$ for all $n \in \mathbb{Z}^{+}$.
Proof 1: The proof is by contradiction. Let $P(n)$ be the assertion that $F(n)>$ 2^{n-1}. Suppose it is not the case that $P(n)$ is true for all positive integers n. Then there is at least one positive integer where $P(n)$ is false. Let N be the first such positive integer. Hence $F(N) \leq 2^{N-1}$ and $N \geq 1$.

We first check if $N=1$ is possible. By the definition of the function, $F(1)=3$ and $3>2^{1-1}=2^{0}=1$. Hence $P(1)$ is true, and so $N=1$ is not possible. Therefore N must be at least 2 .

Since $N \geq 2$, by the definition of the function, we see that

$$
F(N)=2 F(N-1)+1
$$

Note that $N-1 \geq 1$ (becuase $N \geq 2$) and so $P(N-1)$ is true (because N is the smallest positive integer n for which $P(n)$ is false). Therefore

$$
F(N-1)>2^{N-2}
$$

Putting these together, we obtain

$$
F(N)=2 F(N-1)+1>2 \times 2^{N-1}+1=2^{N}+1>2^{N} .
$$

In other words, we have shown that $P(N)$ is also true. Thus, we derived a contradiction, and so the statement $P(n)$ must be true for all positive integers n. Q.E.D.

Proof 2: The second proof is by induction on n. Let $P(n)$ be as in the previous proof, and note that we have already established that $P(1)$ is true.

Let N be an arbitrary positive integer. Our Inductive hypothesis is that $P(N)$ is true, and we wish to derive that $P(N+1)$ is true. In other words, we wish to derive that $F(N+1)>2^{N}$.

Since $N \geq 1$, it follows that $N+1 \geq 2$, and hence by the definition of the function F, we obtain:

$$
F(N+1)=2 F(N)+1
$$

By our I.H., $F(N)>2^{N-1}$, and so

$$
F(N+1)=2 F(N)+1>2 \times 2^{N-1}+1=2^{N}+1>2^{N}
$$

In other words, we have shown that

$$
F(N+1)>2^{N}
$$

and thus $P(N+1)$ is true.
Since N was an arbitrary positive integer, this means we have shown that $P(n)$ is true for all positive integers n. Q.E.D.

