
CS 173, notes from September 11, 2018

These notes show two ways of proving theorems - one by induction and the
other by contradiction.

Theorem 1: Let F : Z+ → Z be defined recursively by

• F (1) = 3

• F (n) = 2F (n− 1) + 1 for n ≥ 2

Then F (n) > 2n−1 for all n ∈ Z+.

Proof 1: The proof is by contradiction. Let P (n) be the assertion that F (n) >
2n−1. Suppose it is not the case that P (n) is true for all positive integers n.
Then there is at least one positive integer where P (n) is false. Let N be the
first such positive integer. Hence F (N) ≤ 2N−1 and N ≥ 1.

We first check if N = 1 is possible. By the definition of the function, F (1) = 3
and 3 > 21−1 = 20 = 1. Hence P (1) is true, and so N = 1 is not possible.
Therefore N must be at least 2.

Since N ≥ 2, by the definition of the function, we see that

F (N) = 2F (N − 1) + 1.

Note that N − 1 ≥ 1 (becuase N ≥ 2) and so P (N − 1) is true (because N is
the smallest positive integer n for which P (n) is false). Therefore

F (N − 1) > 2N−2.

Putting these together, we obtain

F (N) = 2F (N − 1) + 1 > 2× 2N−1 + 1 = 2N + 1 > 2N .

In other words, we have shown that P (N) is also true. Thus, we derived a
contradiction, and so the statement P (n) must be true for all positive integers
n. Q.E.D.

Proof 2: The second proof is by induction on n. Let P (n) be as in the
previous proof, and note that we have already established that P (1) is true.

Let N be an arbitrary positive integer. Our Inductive hypothesis is that
P (N) is true, and we wish to derive that P (N + 1) is true. In other words, we
wish to derive that F (N + 1) > 2N .

Since N ≥ 1, it follows that N + 1 ≥ 2, and hence by the definition of the
function F , we obtain:

F (N + 1) = 2F (N) + 1

By our I.H., F (N) > 2N−1, and so

F (N + 1) = 2F (N) + 1 > 2× 2N−1 + 1 = 2N + 1 > 2N
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In other words, we have shown that

F (N + 1) > 2N

and thus P (N + 1) is true.
Since N was an arbitrary positive integer, this means we have shown that

P (n) is true for all positive integers n. Q.E.D.
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