CS173, Trees

Tandy Warnow

October 23, 2018

CS 173
Trees
Tandy Warnow

Today's material

- Two theorems about trees with their proofs (comment about induction on trees)
- More theorems about trees (no proofs)

Theorems about trees

- Every tree $T=(V, E)$ with at least two vertices has at least two nodes that have degree 1 (hint: consider a longest path in the tree)
- If a tree $T=(V, E)$ has n vertices, then it has $n-1$ edges

Every tree with at least two vertices has at least two leaves

The leaves of a tree are the nodes with degree 1 ; all other nodes are internal nodes.

Theorem: Every tree T with at least two vertices has at least two leaves.
Proof: Consider a longest path P in T.
Since T is finite, the path begins at some node v and ends at some node w.

We will prove that both endpoints of P are leaves.

Proving every tree with at least two vertices has at least two leaves

Proof by contradiction.
Let $T=(V, E)$ be a tree with at least two vertices, and let P be a longest path in tree T.
We write $P=v_{1}, v_{2}, \ldots, v_{k}$, with $k \geq 2$.
Suppose v_{1} is not a leaf in T.
Then the neighbor set of v_{1}, denoted $\Gamma\left(v_{1}\right)$, has at least two vertices, and so $\exists x \in V, x \neq v_{2}$ such that $\left(v_{1}, x\right) \in E$.

- If x is in the path P, then $x=v_{i}$ for some $i>2$, and $v_{1}, v_{2}, \ldots, v_{i}, v_{1}$ is a cycle in T, which is a contradiction (because T is a tree).
- If x is not in P, then $P^{\prime}=x, v_{1}, v_{2}, \ldots, v_{k}$ is a path in T that is strictly longer than P, contradicting our hypothesis that P is a longest path.

Hence every endpoint of a longest path in T is a leaf, and so T contains at least two leaves.

Every tree with n vertices has exactly $n-1$ edges

Theorem: Every tree with n vertices has exactly $n-1$ edges.
Proof: By induction on n.
Base case: If $n=1$, then T has no edges, and the base case holds.
The inductive hypothesis is that $\exists K \geq 1$ such that for all $n, 1 \leq n \leq K$, if tree T has n vertices then T has $n-1$ edges.

Now assume T has $K+1 \geq 2$ vertices; we want to prove T has K edges.

Proof that every tree with n vertices has $n-1$ edges

Since T is a tree, T has at least two leaves.
Let v be a leaf in T, and let w be its single neighbor.
Let T^{\prime} be the graph created by deleting v.
Note that T^{\prime} is a tree with K vertices, because:

- T^{\prime} has one less vertex than T.
- T^{\prime} is connected and acyclic

By the inductive hypothesis, T^{\prime} has $K-1$ edges.
Recall that T^{\prime} has one less edge than T.
Hence T has K edges. (q.e.d.)

Important: We started with a tree on $K+1$ vertices and removed a leaf to get a tree on K vertices. We did not go the reverse direction!

More about trees

What NP-hard problems can we solve efficiently on trees?

- Chromatic number?
- Max Clique?
- Maximum Independent Set?
- Minimum Dominating Set?
- Minimum Vertex Cover?

Some results on trees

- Chromatic number of any tree is at most 2 .
- The max clique size of any tree is at most 2.
- For every tree T, there is at least one maximum independent set that contains all the leaves of T. (Why?)
- For every tree T on $n \geq 3$ leaves, there is a minimum vertex cover that does not contain any leaves. (Why?)
- For every tree T on $n \geq 3$ leaves, there is a minimum dominating set that does not contain any leaves. (Why?)

Class exercise

Do one or more of the following:

1. Prove every tree can be properly 2 -colored.
2. Prove that every tree with at least 3 vertices has a minimum dominating set that does not contain any leaves.
