
Introduction to Computational Complexity

Tandy Warnow

October 30, 2018

CS 173, Introduction to Computational Complexity
Tandy Warnow

Overview

Topics:

I Solving problems using oracles

I Proving the answer to a decision problem is YES

I The SAT problem

I NP
I co-NP
I P
I NP-hard and NP-complete

SAT

SAT (Satisfiability) is a decision problem.

I Input: Boolean formula

I Output: YES (if there is an assignment of T/F to the
variables that makes the expression True) or NO (if no such
assignment exists)

What is the construction problem?

SAT

Suppose you have an ORACLE that correctly answers the decision
problem.

Can you use it to find a satisfying assignment (when the formula is
satisfiable)?

How many calls to the ORACLE do we need?

Conjunctive Normal Form (CNF)

Propositional formulas that are the “and” of a collection of
clauses, where each clause is the “or” of literals.

A “literal” is a variable, which can be negated

See the webpage at wikipedia, for example...
https://en.wikipedia.org/wiki/Conjunctive_normal_form

I 2-CNF: all the clauses have at most two literals

I 3-CNF: all the clauses have at most three literals

Can we determine in polynomial time if a 2-CNF formula is
satisfiable?

What about 3-CNF?

https://en.wikipedia.org/wiki/Conjunctive_normal_form

Using Oracles

Recall the definitions of the decision problem, k-colorability (i.e.,
does the given graph have a proper vertex coloring with at most k
colors?).

I Suppose we have an Oracle that solves 3-coloring. Can we use
it to solve 4-colorability?

I Suppose we have an oracle that solves 4-coloring. Can we use
it to solve 3-coloring?

Decision Problems

A decision problem returns YES or NO on every input. Hence, a
decision problem is usually described by a YES/NO question.

I 2-colorability (Can the input graph be vertex-colored with red
and blue, so that no edge connects vertices of the same
color?)

I 3-colorability (Can the input graph be vertex-colored with red,
blue, and green, so that no edge connects vertices of the same
color?)

I 2-SAT (Is the input 2CNF formula satisfiable?)

I 3-SAT (Is the input 3CNF formula satisfiable?)

I Hamiltonian Graph (Does the input graph have a cycle that
visits every vertex exactly once?)

I Eulerian Graph (Does the input graph have a cycle that visits
every edge exactly once?)

3-colorability

Suppose I want to figure out if a graph G = (V ,E) has a proper
3-coloring of the vertices.

My friend says it does but I’m not sure, and my graph is too big
for me to look at all the possible colorings.

Question to class: How many possible colorings are there, as a
function of the number of vertices?

How can my friend convince me?

3-colorability: proving YES

The proof that G = (V ,E) has a 3-coloring is simple:

I show the assignment of colors to the vertices

I verify no two adjacent vertices have the same color

Note:

I The time to prove YES is polynomial once the coloring is
found

I This is not relevant to the case where the graph cannot be
3-colored.

3-colorability: proving NO

Now suppose I have another large graph G = (V ,E), and my
friend says it doesn’t have a proper 3-coloring of its vertices.

How can my friend convince me that she is right?

Certainly she can list all the possible colorings and we can check
them all (exhaustive search) to see if any of them are proper.

This would work, but it is really expensive.

Question to class: how expensive?

Decision Problems

Remember that a decision problem returns YES or NO for every
input.

I The YES-instances are the inputs for which the answers are
YES.

I The NO-instances are the inputs for which the answers are
NO.

NP

NP = “Non-deterministic Polynomial Time”

Definition: NP is the set of decision problems for which you
can prove YES-instances are YES-instances in polynomial time.

NP

Which of these decision problems are in NP?

I 2-colorability (Can the input graph be vertex-colored with red
and blue, so that no edge connects vertices of the same
color?)

I 3-colorability (Can the input graph be vertex-colored with red,
blue, and green, so that no edge connects vertices of the same
color?)

I 2-SAT (Is the input 2CNF formula satisfiable?)

I 3-SAT (Is the input 3CNF formula satisfiable?)

I Hamiltonian Graph (Does the input graph have a cycle (or
path) that visits every vertex exactly once?)

I Eulerian Graph (Does the input graph have a circuit (or path)
that visits every edge exactly once?)

co-NP

co-NP is the set of decision problems where there are polynomial
time proofs that NO-INSTANCES are NO-INSTANCES.

We won’t discuss co-NP very much.

P
P is the set of decision problems that can be solved in polynomial
time.
Which of these decision problems are in P?

I 2-colorability (Can the input graph be vertex-colored with red
and blue, so that no edge connects vertices of the same
color?)

I 3-colorability (Can the input graph be vertex-colored with red,
blue, and green, so that no edge connects vertices of the same
color?)

I 2-SAT (Is the input 2CNF formula satisfiable?)

I 3-SAT (Is the input 3CNF formula satisfiable?)

I Hamiltonian Graph (Does the input graph have a cycle that
visits every vertex exactly once?)

I Eulerian Graph (Does the input graph have a cycle that visits
every edge exactly once?)

P and NP

I Note that P ⊆ NP.

I Hence NP contains easy problems and perhaps not so easy
problems.

I Does NP contain problems that cannot be solved in
polynomial time? If so then P 6= NP. Otherwise, P = NP.

Reducing between Problems

Suppose you have two decision problems, π and π′.

Suppose π′ ∈ P, and that A is an algorithm to solve π′.

We would like to use A to help solve π in polynomial time.

To do this, we try to make the inputs to π look like inputs to π′.
What else do we need?

Figure : Steve Cook, see https://en.wikipedia.org/wiki/Stephen Cook

Figure : Richard Karp, inventor of Karp Reductions. See
https://en.wikipedia.org/wiki/Richard M. Karp.

Karp Reductions

Suppose you have two decision problems, π and π′.
Suppose π′ ∈ P, and that A is a polynomial time algorithm to
solve π′.
Suppose we have a function F that maps inputs to π to inputs to
π′, so that:

I YES-instances of π map to YES-instances of π′

I NO-instances of π map to NO-instances of π′

I The function F takes polynomial time to compute

I The size of F (I) is polynomial in the size of I for any input I

Such a function F is called a Karp reduction, after Dick Karp
(Berkeley) who came up with them.

Karp Reduction

If π and π′ are two decision problems in NP and there is a Karp
reduction from π to π′, we write this as

π ∝ π′,

and say that “π reduces to π′”.

Note that if π1 ∝ π2 and π2 ∝ π3, then π1 ∝ π3. That is, Karp
Reductions are transitive.

Karp Reductions

Suppose π′ ∈ P, and that A is a polynomial time algorithm to
solve π′.
Suppose π ∝ π′, and that F is the Karp Reduction.

Given instance I to π,

I Compute F (I), which is an instance of π′.

I Run algorithm A on F (I)

I If A says YES, then return YES; otherwise return NO.

So: if you can find a Karp Reduction from π to π′, then if π′ can
be solved in polynomial time then so can π!

Karp reduction

We can summarize the previous discussion as follows:

Theorem: If π′ ∈ P and π ∝ π′ then π ∈ P.

Karp reduction

Question: If π ∈ P and π ∝ π′, do we learn anything?

Karp reduction

Remember the 2-colorability problem:

I Input: Graph G = (V ,E)

I Question: Can we 2-color the vertices of G so that no two
adjacent vertices get the same color?

and consider the 3-colorability problem:

I Input: Graph G = (V ,E)

I Question: Can we 3-color the vertices of G so that no two
adjacent vertices get the same color?

We will show that 2-colorability ∝ 3-colorability.

2-colorability ∝ 3-colorability

Let F map instances of 2-colorability to instances of 3-colorability
as follows.
Given graph G = (V ,E), let F (G) be the graph G ′ = (V ′,E ′)
defined by

I V ′ = V ∪ {v∗}, where v∗ is a new vertex

I E ′ = E ∪ {(v∗, v) : v ∈ V }
It is not hard to see that F is a Karp reduction.
(In particular, G can be 2-colored if and only if F (G) can be
3-colored.)

Yet, 2-colorability is in P.

Do we learn anything about 3-colorability?

Karp reduction

When you show that a problem π reduces to π′, then you learn
that π is no harder than π′.

Therefore, knowing that π′ can be solved in polynomial time really
tells you something - that π can be solved in polynomial time.

However, if π ∈ P and π ∝ π′, you don’t learn anything about π′.
It could be that π′ is solvable in polynomial time, or maybe not!

Karp reduction

In 1972, Dick Karp proved that every problem in NP reduces to
3-SAT using a Karp reduction.

Written differently: ∀π ∈ NP, π ∝ 3-SAT

What does this mean?

(See https://en.wikipedia.org/wiki/Karp%27s_21_

NP-complete_problems)

https://en.wikipedia.org/wiki/Karp%27s_21_NP-complete_problems
https://en.wikipedia.org/wiki/Karp%27s_21_NP-complete_problems

Karp reduction

Suppose ∀π′ ∈ NP, π′ ∝ π.

Further suppose that π ∈ P.

What can you deduce from this?

Karp reduction

Theorem: Suppose ∀π′ ∈ NP, π′ ∝ π, and π ∈ P. Then
P = NP.

NP-hard

A problem π is said to be NP-hard if a polynomial time algorithm
to solve π could be used to solve every problem in NP in
polynomial time.
Notes:

I If π satisfies ∀π′ ∈ NP, π′ ∝ π, then π is NP-hard.

I If any NP-hard problem can be solved in polynomial time,
then so can all problems in NP!

I Karp already proved that 3-SAT is NP-hard (as well as 20
other problems). Many other problems have been proven to
be NP-hard.

I To prove that a new decision problem π is NP-hard, you just
have to find a known NP-hard problem π′ and show that
π′ ∝ π.

NP-complete

A problem π is said to be NP-complete if and only if

I π ∈ NP
I π is NP-hard

Class Exercise

Provide a Karp reduction from 3-colorability to 4-colorability.

NP-hard

We use the fact that 3-colorability is NP-hard to prove that
4-colorability is NP-hard.

Does P = NP?

According to Wikipedia:

Nobody has yet been able to determine conclusively
whether NP-complete problems are in fact solvable in
polynomial time, making this one of the great unsolved
problems of mathematics.

The Clay Mathematics Institute is offering a US $1
million reward to anyone who has a formal proof that
P = NP or that P 6= NP.

Dealing with NP-hard problems

Although we don’t know if P = NP, let’s assume they aren’t the
same... and hence that NP-hard problems are going to be hard to
solve!

What does this mean to you, as a programmer?

Describing a real world problem
You want to partition the set of people into subsets so that every
two people in any subset both like each other, and make the
number of subsets as small as possible.

Solution: The graph G = (V ,E) is defined by

I V is the set of people in the class

I E contains (v ,w) if and only if v and w like each other

We are looking for a partition of V into a small number of sets so
that every one of the sets is a clique.
In other words, we want to write V = V1 ∪V2 ∪ . . .∪Vk , where Vi

is a clique in G and where k is minimized.

I Does a solution always exist?

I Does it have to be unique?

I What graph problem does this look like?

A different solution

You want to partition the set of people into subsets so that every
two people in any subset both like each other, and make the
number of subsets as small as possible.

Solution: The graph G = (V ,E) is defined by

I V is the set of people in the class

I E contains (v ,w) if and only if v doesn’t like w or w doesn’t
like v (i.e., they don’t like each other)

We are looking for a partition of V into a small number of sets so
that every one of the sets is an independent set.
Note - this is the same thing as finding a minimum vertex
coloring.

Things to note

When you formulate a real world problem as a graph problem, you
have to:

I Describe the graph precisely. What are the vertices? What are
the edges? Do the edges have weights? Use correct
terminology (don’t be sloppy about language).

I Once the graph is defined, the problem (whether a decision
problem, optimization problem, or construction problem) is
then defined only in terms of the graph and not in terms of
the original problem.

The power in making this formulation is that there are many
algorithms (and software) for most natural graph problems, and so
you can use those programs to solve your problem.

Many graph problems are NP-hard, but sometimes you have extra
structure in your problem that allows you to solve the problem in
polynomial time. (For example, MIN VERTEX COLORING is
NP-hard, but solvable in polynomial time on trees.)

Toy Example

You work for some spy agency, and you want to listen in on all the
phone calls happening in Urbana.
You can put bugs in cellphones, and the bugs will let you listen to
any conversation that takes place using that cellphone.
You know which people call which people, and so you can try to
use that information to reduce the number of bugs you need to
buy and install.
You assume everyone has exactly one cellphone and all calls are
made using cellphones to cellphones.

Formulate this as a graph problem.

Toy Example: Spy Agency

I What are the vertices? (Answer: Cellphones)

I What are the edges? (Answer: pairs of cellphones where their
owners are known to call each other.)

I What are you looking for?
I Answer: the smallest number of cellphones so that all phone

calls involve at least one cellphone in the set.
I Better answer: the smallest set V0 ⊆ V of vertices so that

every edge in E has at least one endpoint in V0.

Do you recognize this problem?

What do you do when a problem is NP-hard?

Suppose you reduce your problem to a graph theoretic problem
that a problem is NP-hard.

What does this mean?

What should you do?

Class Exercises

Formulate each of these as a graph-theoretic problem:

I You want to pair people off in the class so that they will study
together. You want to have as large a number of people able
to be in study groups, but you have the following rules: study
groups must have pairs of people who like each other, and no
person can be in two study groups.

I You want to have a party and invite as many people as you
can to it, subject to (a) they all like you, and (b) they all like
each other.

