
CS173, Minimum Spanning Trees

Tandy Warnow

December 4, 2018

1 Minimum Spanning Trees

A spanning tree of a connected graph G = (V,E) is a subgraph that includes
all the vertices and is a tree.

If the edges of the graph G have weights, then we can also talk about the
“cost” of a spanning tree T for the graph: this is the sum of its edge weights.
Hence, a minimum spanning tree (MST) for a graph G = (V,E) is a spanning
tree for G that has minimum cost. This leads to the MST problem, as follows:

• Input: Connected graph G = (V,E) and positive edge weights w : E →
Z+

• Output: Spanning tree T = (V,E′) of G that has minimum cost, where
cost(T ) = Σe∈E′w(e)

There are several well known algorithms for MST calculation, each using
greedy strategies:

• Kruskal’s algorithm: Keep adding the least weight edges (don’t include
those that create cycles)

• Prim’s: Grow a spanning tree, adding least costly edge to an unvisited
vertex

• Keep deleting the most costly edges, maintaining that you have a con-
nected graph (i.e., don’t delete bridges) - no name for this algorithm

All these three algorithms are polynomial time. For example, Kruskal’s
algorithm can be seen as having the following steps:

1. Sort the edges from lightest to heaviest

2. Initialize T0 to be the empty graph (no edges) and all the vertices from G

3. For each edge e in the list, in turn:

• If T0 + e (the graph formed by adding e to T0) does not have any
cycles, then replace T0 by T0 +e. (See below for how to test if adding
an edge to a graph creates a cycle.)

1



When you want to find out if adding an edge (x, y) to a graph T0 will create
a cycle, it is enough to check to see if x and y are in the same component of
T0. You can test this by starting a BFS (Breadth First Search) or Depth First
Search (DFS) starting at one node (say x) and seeing if you reach the other
node (say y). If you can reach y from x (or vice-versa), then there is a path
between them in T0. Therefore, adding an edge between x and y will create
a cycle. Both BFS and DFS run in polynomial time, and are pretty common
algorithms for use in graphs. Hence, Kruskal’s algorithm runs in polynomial
time.

Exercises:

• Run Kruskal’s algorithm on Wn (the wheel graph) where the edges that
are incident with the central node have weight n and the edges around the
outside (i.e., the ones that are not incident with the central node) have
weight 1. (For this problem assume n ≥ 3.) What is your spanning tree?

• Run Kruskal’s algorithm on Wn (the wheel graph) where the edges that
are incident with the central node have weight 1 and the edges around the
outside (i.e., the ones that are not incident with the central node) have
weight n. (For this problem assume n ≥ 3.) What is your spanning tree?

• Run Kruskal’s algorithm on K3,5 with weight w(vi, wj) = i+ j:

• Think about how you would implement Prim’s algorithm, using DFS or
BFS to check for whether you are creating a cycle when you add an edge.

• Think about how you would implement the un-named algorithm.

• Think about changing the problem so that what you want is a spanning
tree that minimizes the maximum weight edge. Can you still find an
optimal solution?

2 Triangle TSP

The Travelling Sales Person Problem (TSP) can be stated as follows. You have
a set of cities and a matrix M indicating how expensive it is to travel between
any two cities. That cost could be miles, or tolls, or whatever - just imagine it’s
always positive. The TSP problem seeks a tour that has minimum cost. Thus,
M [i, j] is the cost to travel between cities vi and vj .

Suppose you have an ordering σ of the cities v1, v2, . . . , vn. This ordering
defines a tour that begins at v1, then visits v2, then v3, etc., until it reaches vn,
and then goes back to v1. The cost of σ, denoted cost(σ), is the sum of the
distances between adjacent cities: i.e.,

cost(σ) = M [1, 2] +M [2, 3] + . . .+M [n− 1, n] +M [n, 1]

2



The TSP problem seeks the tour of minimum total cost. This is an NP-hard
problem, but there are many heuristics for this problem.

One special case is where we assume that the matrix M is a true “distance”
matrix, which means:

• M [x, x] = 0 for all x

• M [x, y] = M [y, x] for all x, y

• M [x, y] ≤M [x, z] +M [z, y] for all x, y, z

The last property is called the “triangle inequality”, and it may not hold on
some inputs. But suppose we have a matrix where all three properties hold, so
that M is a distance matrix.

What we will show is that we can find an approximation algorithm for TSP
when these three properties hold. We refer to this as the “Triangle TSP” prob-
lem.

3 Approximation Algorithms

Remember that TSP is a construction problem, where we are trying to find
the minimum cost tour. Since this is an NP-hard problem, we can’t expect to
develop a polynomial time algorithm that always finds an optimal solution on
all inputs. (This is the basic P = NP? question that we have talked about.)

Even though we may not be able to find a minimum cost tour, we can try
to design an algorithm that produces a tour that is not too bad. So what do we
mean by “too bad”?

For a given input matrix M and a given tour γ that we find, we refer to
the “approximation ratio” as the ratio of cost(γ) and cost(γ∗), where γ∗ is the
optimal tour for that input matrix M . Note that this ratio is always at least
1 on any input matrix M , because by definition it is not possible to get a tour
that is less costly than the optimal tour.

Then, for the algorithm A, we define

rA = max
M

cost(γ)

cost(γ∗)
,

where the maximum is taken over all matrices M . Obviously rA ≥ 1. What we
would like is to find an algorithm where rA is as close to 1 as possible.

An algorithm A that satisfies rA = c < ∞ is said to be a c-approximation
algorithm. For example, a 2-approximation algorithm for TSP is one that would
always produce a tour whose cost would never be more than twice that of the
optimal tour for any input.

As we will see, we can get a 2-approximation algorithm for Triangle-TSP.

3



4 2-approximation algorithm for Triangle-TSP

Here’s a surprisingly simple algorithm that gives a tour that is never more than
twice as “long” as the optimal tour. The input is an n × n matrix M , and
the output will be a tour γ, for which we will prove that cost(γ) is at most
2× cost(γ∗), where γ∗ is an optimal TSP.

The input is the n × n matrix M that satisfies all three properties above,
including the triangle inequality:

• Construct the graph Kn with edge weights w(vi, vj) = M [i, j]

• Compute a MST T0 on the edge-weighted graph you constructed

• Double the edges in Kn, creating a graph G

• Find an Eulerian tour for G, and call this γ

• Replace γ by a tour γ′ that has each vertex appearing only once (do this
by starting at any node in the tour, then listing each node only the first
time it appears).

Theorem: The algorithm described above is a 2-approximation algorithm;
thus, cost(γ′) ≤ 2× cost(γ∗).

Proof: First, we show that cost(T0) < cost(γ∗). Remove any edge in γ∗; this
produces a spanning tree T for G; note that cost(T ) < cost(γ∗) since all edge
weights have positive weight. Since T0 is a MST, this means that cost(T0) ≤
cost(T ). Putting this all together, we obtain cost(T0) ≤ cost(T ) < cost(γ∗).

Now remember how we compute γ: we have doubled every edge in T0 (the
MST), and then computed an Eulerian tour γ. Because every edge is doubled,
we get cost(γ) = 2 × cost(T0). We then modified γ to get a tour γ′ that only
visits every vertex once. Because M satisfies the triangle inequality, we get
cost(γ′) ≤ cost(γ). Hence, cost(γ′) ≤ 2× cost(T0).

Therefore, cost(γ′) ≤ 2 × cost(T0) < 2 × cost(γ∗). In other words, γ′ is a
tour that is less than twice as costly as the least costly tour. In other words,
for all inputs M , the algorithm produces a tour that is less than twice as costly
as the least costly tour.

4


