
CS173
Introduction to Graph Algorithms

Tandy Warnow

November 13, 2018

CS 173
Introduction to Graph Algorithms
Tandy Warnow

Today’s material

I Exhaustive search strategies

I Greedy search

I Decision, Optimization, and Construction Problems

I Proving theorems about graphs

Solving MAX CLIQUE using exhaustive search

Suppose you want to solve MAX CLIQUE.
Given input graph G = (V ,E):

I Enumerate all subsets of V

I For each one, determine if it is a clique; if so, record size

I Return size of largest clique found.

Obviously correct, but too expensive. (How expensive?)

This is an example of Exhaustive Search

Solving MAX CLIQUE using greedy search

Given input graph G = (V ,E):

I Order the vertices v1, v2, . . . , vn
I A := {v1}
I For i = 2 up to n DO:

I If A ∪ {vi} is a clique, then A := A ∪ {vi}
Return A

Obviously A is a clique, but it may not be maximum.
This is a fast algorithm, but it may not find an optimal solution.
(Class: show such a graph.)

This is an example of a greedy algorithm.

Solving MAX CLIQUE

How can we solve MAX CLIQUE?

I The exhaustive search strategy is not polynomial time.

I The greedy algorithm is fast but not guaranteed to find an
optimal solution.

I What should we do?

The problem is MAX CLIQUE is NP-hard!

In Class Problem

Suppose you have an algorithm A that solves the decision problem
for MATCHING:

I Input: Graph G = (V ,E) and positive integer k

I Question: ∃E0 ⊆ E such that |E0| = k and E0 is a matching?

Can we make a polynomial number of calls to A (and a polynomial
amount of other operations) to

I find the size of the maximum matching in G?

I find the largest matching in G?

Relationship between decision, optimization, and
construction problems

To solve the optimization problem, we define Algorithm B as
follows.
The input is graph G = (V ,E). If E = ∅, we return 0. Else, we do
the following:

I For k = |E | down to 1, DO
I If A(G , k) = YES , then Return(k)

It is easy to see that

I B is correct,

I that B calls A at most m times

I that B does at most O(m) additional steps.

Hence B satisfies the desired properties.

Relationship between decision, optimization, and
construction problems

We define Algorithm C to find a maximum matching, as follows.
The input is graph G = (V ,E). If E = ∅, we return ∅. Otherwise,
let E = {e1, e2, . . . , em}, and let k = B(G).

I Let G ∗ be a copy of G
I For i = 1 up to m DO

I Let G ′ be the graph obtained by deleting edge ei (but not the
endpoints of ei) from G∗.

I If A(G ′, k) = YES , then set G∗ := G ′.

I Return the edge set E (G ∗) of G ∗.

It is easy to see that C calls B once, calls A at most m times, and
does at most O(m) other operations. Hence the running time
satisifes the required bounds.
What about accuracy?

Finding the largest matching in a graph

I Let G ∗ be a copy of G
I For i = 1 up to m DO

I Let G ′ be the graph obtained by deleting edge ei (but not the
endpoints of ei) from G∗.

I If A(G ′, k) = YES , then set G∗ = G ′.

Return the edge set of G ∗.

Notes:

I The edge set returned at the end is a matching (we’ll look at
this carefully in the next slide).

I We never reduce the size of the maximum matching when we
delete edges. Hence, B(G ∗) = B(G).

I Therefore this algorithm returns a maximum matching.

Finding the largest matching in a graph
Recall k is the size of a maximum matching in input graph G , with
edge set {e1, e2, . . . , em}, m ≥ 1.

I Let G ∗ be a copy of G
I For i = 1 up to m DO

I Let G ′ be the graph obtained by deleting edge ei (but not the
endpoints of ei) from G∗.

I If A(G ′, k) = YES , then set G∗ = G ′.

Return the edge set of G ∗.

Theorem: The edge set E ∗ of G ∗ is a matching in G .
Proof (by contradiction): If not, then E ∗ has at least two edges
ei and ej (both from E) that share an endpoint. Let E0 be a
maximum matching in G ∗; hence E0 is a maximum matching for
G . Note that E0 cannot include both ei and ej . Suppose (w.l.o.g.)
ei 6∈ E0. During the algorithm, we checked whether a graph G ′

that did not contain ei had a matching of size k . Since we did not
delete ei , this means the answer was NO. But the edge set of that
G ′ contains the matching E0, which means G ′ has a matching of
size k, yielding a contradiction.

Reductions

I We used an algorithm A for decision problem π to solve an
optimization or construction problem π′ on the same input.
We also required that we call A at most a polynomial number
of times, and that we do at most a polynomial number of
other operations.

I This means that if A runs in polynomial time, then we have a
polynomial time algorithm for both π and π′. Note that we
use two things here: A is polynomial, and the input did not
change in size.

I What we did isn’t really a Karp reduction, because Karp
reductions are only for decision problems... but the ideas are
very related.

I If you can understand why this works, you will understand
why Karp reductions have to satisfy what they satisfy.

Just try to understand the ideas. This is not about memorization.

Complements of graphs
Let G = (V ,E) be a graph
The graph G c contains the same vertex set, but only contains the
missing edges (though not the self-loops), and is referred to as the
complement of G .

I Suppose V0 is a clique in G . What can you say about V0 in
G c?

I Suppose V0 is an independent set in G . What can you say
about V0 in G c?

Complements of sets

Suppose V0 is an independent set in G .
What can you say about G \ V0?

Suppose V0 is a clique in G .
What can you say about V \ V0?

Suppose V0 is a vertex cover in G .
What can you say about V \ V0?

Manipulating Graphs

Adding vertices to graphs:
Suppose you add a vertex v to G and make v adjacent to every
vertex in V .

Let the new graph be called G ′.

How do these values change between G and G ′?

I the size of the maximum clique,

I the size of the maximum independent set,

I the chromatic number

Things to think about

I Suppose G is a simple graph that has a maximum matching
of size k and a minimum vertex cover of size k ′. Prove that
k ′ ≥ k .

I Prove that every tree can be 2-colored.

I Prove that every tree with at least two three vertices has a
sibling pair of leaves (where two leaves are siblings if they
share a neighbor).

I Come up with a simple algorithm to find a maximal matching
(i.e., a matching that cannot be enlarged by adding another
edge) in a graph, and analyze its running time.

I Show how having an algorithm to compute the chromatic
number in a graph can be used to find an optimal vertex
coloring for a graph, with only a polynomial number of calls
to the algorithm.

