
CS173
Designing DP algorithms and proving them

correct

Tandy Warnow



CS 173
Designing DP algorithms and proving them correct
Tandy Warnow



DP algorithms you’ve already seen

September 27

I Fibonacci numbers

I Coin changing problem

September 29

I DP algorithm for computing the longest increasing substring

I DP algorithm for finding a longest increasing subsequence

October 2

I DP algorithm for computing All Pairs Shortest Paths in graph

Are these algorithms correct?
Can we prove these algorithms correct?



Dynamic Programming to compute F (n)

Let F (n) denote the nth Fibonacci number:
Input: n, positive integer
Output: F(n)

Fill in an array, FIB[1...n] as follows:

I FIB[1] := 1

I FIB[2] := 1
I For i := 3 up to n do:

I FIB[i ] := FIB[i − 1] + FIB[i − 2]

I Return FIB[n]

Recall we analyzed the running time and showed it was O(n) to
compute FIB[n].

Let’s prove that FIB[n] is the same as F (n), the nth Fibonacci
number.



Proving the DP algorithm correct

Let F (n) be the nth Fibonacci number, defined recursively by

I F (1) = F (2) = 1 and

I F (n) = F (n − 1) + F (n − 2) for n ≥ 3

We prove that F (n) = FIB[n] by strong induction on n.

Let P(N) denote the statement ∀n ∈ Z+, n ≤ N,FIB[n] = F (n).

By definition, FIB[n] = F (n) for n = 1, 2, so the two base cases
are true.

We have shown P(1) and P(2) is true (our base cases).

Our Strong Inductive Hypothesis is that P(N) is true for some
arbitrary N ≥ 2.

We wish to prove that P(N + 1) is true.

In other words, we wish to prove that FIB[N + 1] = F (N + 1).



Proving the DP algorithm for Fibonacci is correct

To prove that FIB[N + 1] = F (N + 1), note that N ≥ 2 so
N + 1 ≥ 3.

Hence FIB[N + 1] = FIB[N] + FIB[N − 1], by the DP algorithm.

By the inductive hypothesis FIB[N] = F (N) and
FIB[N − 1] = F (N − 1), and so FIB[N + 1] = F (N) + F (N − 1).

Hence, FIB[N + 1] = F (N + 1), by the definition of the Fibonacci
numbers.

Since N was arbitrary, by the Principle of Mathematical Induction,
FIB[N] = F (N) for all non-negative integers N.



Other applications of Dynamic Programming

We have already shown DP algorithms for some other problems,
such as:

I Coin changing problem

I Computing the longest increasing substring in a sequence

I Finding the longest increasing subsequence in a sequence

I Finding all-pairs shortest paths in an edge-weighted graph

You can also find DP algorithms online for:

I Longest common subsequence of two sequences

I Minimum edit distance between two strings (where insertions,
deletions, and substitutions each cost 1)

I Biology problem: optimal pairwise alignment between two
DNA sequences (corresponds to minimum edit distance)

I Biology problem: maximum parsimony on a tree

Let’s do DP for a two-person game.



DP algorithm for a two-person game

Suppose we have a two-person game, as follows.

I There are two piles of rocks.

I Each player picks a pile and then takes 1 or 2 two rocks off
that pile.

I The person who takes the last rock off wins.

Use DP to determine which player has a winning strategy when the
starting condition has x rocks on pile 1 and y rocks on pile 2.



DP algorithm for two-person game

Consider the starting condition (x , y) to mean that pile 1 has x
rocks and pile 2 has y rocks.

Define a matrix M[0...x , 0...y ] by

I M[0, 0] = 2

I If i + j > 0 then M[i , j ] is 1 if and only if Player 1 has a
winning strategy for starting condition (i , j).

Questions to class:

I What is M[1, 0]?

I What is M[2, 0]?

I What is M[3, 0]?

I What is M[1, 1]?

How should M[i , j ] be defined, algorithmically?



DP algorithm for two-person game

Key observation: Player 1 has a winning strategy if and only if she
can move to a condition where player 2 has a winning strategy
(because she becomes player 2 after she moves).

Remember that each player picks a pile and then takes 1 or 2 rocks
off the pile.

Hence, we should set M[i , j ] to 1 if and only if at least one of the
following is set to 2:

I M[i − 1, j ]

I M[i − 2, j ]

I M[i , j − 1]

I M[i , j − 2]

Of course, you need to make sure to check if these value are out of
bound or not.



Finishing the DP algorithm

Given starting condition x , y with 0 ≤ x , y and x + y > 0, we fill
out the matrix M[., .] as follows:

I We set M[0, 0] to 2

I We set M[1, 0],M[2, 0],M[0, 1], and M[0, 2] all to 1 (these
are the cases where Player 1 wins immediately).

I For all other pairs i , j with i ≤ x and j ≤ y , we set M[i , j ] to
1 if and only if at least one of the following is set to 2:

I M[i − 1, j ]
I M[i − 2, j ]
I M[i , j − 1]
I M[i , j − 2]

Otherwise, we set M[i , j ] = 2.

Class exercise: Fill out the matrix for x = 4, y = 3.



Languages

A language is a set of strings over an alphabet Σ.

I The set of all finite-length strings over an alphabet Σ is
denoted Σ∗.

I The set of all non-empty finite-length strings over Σ is
denoted Σ+

I The length of a string is the number of characters it has

I The empty string has zero length

I If x and y are strings, we write yx to denote the
concatenation of the two strings. For example, if x = 00 and
y = 101 then xy = 00101.



A recursively defined language, L

Let L be a set of strings over {0, 1} defined recursively by:

I 1 ∈ L

I If x ∈ L then x10 ∈ L

I If x ∈ L then x0 ∈ L

Thus, L contains only those strings that can be derived using these
rules.
Notes:

I L doesn’t contain any infinite length strings!

I All strings in L of length two or more start with 1 and end
with 0.

Question to class: does L contain every string that begins with 1
and ends with 0?



The set L of strings

Let L be a set of strings over {0, 1} defined recursively by:

I 1 ∈ L

I If x ∈ L then x10 ∈ L

I If x ∈ L then x0 ∈ L

Questions to class:

1. Is 0 ∈ L?

2. Is 11 ∈ L?

3. Is 10110 ∈ L?

4. Find all strings of length up to 3 that are in L.

5. Give one string in L of length 10.



DP algorithm to determine if x ∈ L

Let’s design a DP algorithm to determine if x ∈ L where x is a
binary string.

Let x ∈ {0, 1}+ be given as input (so x is not the empty string).

We define the length of x to be the number of characters in x . For
example, if x = 011001 then the length of x is 6.

We write x [i ] to denote the i th letter of x and x [1...i ] to denote
the prefix of x ending at x [i ].

For example, if x = 011001 then x [4] = 0 and x [1..4] = 0110.



DP algorithm to determine if x ∈ L, continued

If the length of x is at most 2, we return True if and only if
x ∈ {1, 10}.
For all other strings x , we will compute an array M[1...n] where n
is the length of x , and where

M[i ] = True if and only if x [1...i ] ∈ L.

We will then return M[n]!

Basic challenge: how shall we calculate the array M?



DP algorithm to determine if x ∈ L

Computing the array M[1...n] where n > 2 is the length of x :

I M[1] := [x [1] = 1]

I M[2] := [(x [1] = 1) ∧ (x [2] = 0)]
I For i := 3 up to n, we set M[i ] = True if and only if at least

one of the following is True:
I M[i − 1] ∧ (x [i ] = 0)
I M[i − 2] ∧ (x [i ] = 0) ∧ (x [i − 1] = 1)

What are the entries of M when x = 110? What about x = 100?



The DP algorithm

Input: x ∈ {0, 1}+
Output: True or False (i.e., whether x ∈ L)

Algorithm:

I If length(x) ≤ 2, Return (x ∈ {1, 10})
I Else compute M[1...n], where n = length(x), and Return

(M[n])

Questions:

I Is this algorithm correct? Could you prove it correct?

I What is the running time?

Class exercise: Compute M[1...6] for x = 111000 and y = 1000100


