CS173
Designing DP algorithms and proving them
correct

Tandy Warnow



CS 173
Designing DP algorithms and proving them correct
Tandy Warnow



DP algorithms you've already seen

September 27
» Fibonacci numbers
» Coin changing problem
September 29
» DP algorithm for computing the longest increasing substring
» DP algorithm for finding a longest increasing subsequence
October 2
» DP algorithm for computing All Pairs Shortest Paths in graph

Are these algorithms correct?
Can we prove these algorithms correct?



Dynamic Programming to compute F(n)

Let F(n) denote the n" Fibonacci number:
Input: n, positive integer
Output: F(n)
Fill in an array, FIB[1...n] as follows:

> FIB[1] =1

» FIB[2] =1

» For j:= 3 up to n do:

» FIB[i] := FIB[i — 1] + FIB[i — 2]
» Return FIB[n]

Recall we analyzed the running time and showed it was O(n) to
compute FIB[n].

Let's prove that FIB[n] is the same as F(n), the n*" Fibonacci
number.



Proving the DP algorithm correct

Let F(n) be the n" Fibonacci number, defined recursively by
» F(1)=F(2) =1 and
» F(n)=F(n—1)+ F(n—2) forn>3
We prove that F(n) = FIB[n| by strong induction on n.
Let P(N) denote the statement Vn € Z* n < N, FIB[n] = F(n).

By definition, FIB[n] = F(n) for n = 1,2, so the two base cases
are true.

We have shown P(1) and P(2) is true (our base cases).

Our Strong Inductive Hypothesis is that P(N) is true for some
arbitrary N > 2.

We wish to prove that P(N + 1) is true.
In other words, we wish to prove that FIB[N + 1] = F(N + 1).



Proving the DP algorithm for Fibonacci is correct

To prove that FIB[N + 1] = F(N + 1), note that N > 2 so
N+12>3.

Hence FIB[N + 1] = FIB[N] + FIB[N — 1], by the DP algorithm.

By the inductive hypothesis FIB[N] = F(N) and
FIB[N — 1] = F(N — 1), and so FIB[N + 1] = F(N) + F(N — 1).

Hence, FIB[N + 1] = F(N + 1), by the definition of the Fibonacci
numbers.

Since N was arbitrary, by the Principle of Mathematical Induction,
FIB[N] = F(N) for all non-negative integers N.



Other applications of Dynamic Programming

We have already shown DP algorithms for some other problems,
such as:

» Coin changing problem

» Computing the longest increasing substring in a sequence

v

Finding the longest increasing subsequence in a sequence

v

Finding all-pairs shortest paths in an edge-weighted graph
You can also find DP algorithms online for:
» Longest common subsequence of two sequences

» Minimum edit distance between two strings (where insertions,
deletions, and substitutions each cost 1)

> Biology problem: optimal pairwise alignment between two
DNA sequences (corresponds to minimum edit distance)

> Biology problem: maximum parsimony on a tree

Let's do DP for a two-person game.



DP algorithm for a two-person game

Suppose we have a two-person game, as follows.

» There are two piles of rocks.

» Each player picks a pile and then takes 1 or 2 two rocks off
that pile.

» The person who takes the last rock off wins.

Use DP to determine which player has a winning strategy when the
starting condition has x rocks on pile 1 and y rocks on pile 2.



DP algorithm for two-person game

Consider the starting condition (x, y) to mean that pile 1 has x
rocks and pile 2 has y rocks.
Define a matrix M[0...x,0...y| by
» M[0,0] =2
» If i +j > 0 then M[i,j] is 1 if and only if Player 1 has a
winning strategy for starting condition (i, ).

Questions to class:
» What is M[1,0]?
» What is M[2,0]?
» What is M[3,0]?
» What is M[1,1]?
How should M[i, j] be defined, algorithmically?



DP algorithm for two-person game

Key observation: Player 1 has a winning strategy if and only if she
can move to a condition where player 2 has a winning strategy
(because she becomes player 2 after she moves).

Remember that each player picks a pile and then takes 1 or 2 rocks
off the pile.

Hence, we should set M[i, ] to 1 if and only if at least one of the
following is set to 2:

» M[i—1,/]

> M[i —2,/]

> M[i,j—1]

> M[i,j—2]
Of course, you need to make sure to check if these value are out of
bound or not.



Finishing the DP algorithm

Given starting condition x, y with 0 < x,y and x + y > 0, we fill
out the matrix M[.,.] as follows:

» We set M[0,0] to 2
» We set M([1,0], M[2,0], M[0, 1], and MJ0, 2] all to 1 (these
are the cases where Player 1 wins immediately).

» For all other pairs i,j with i < x and j <y, we set M[i, ] to
1 if and only if at least one of the following is set to 2:
» M[i—1,]]
» M[i—2,]]
> M[i,j —1]
> M[i,j —2]
Otherwise, we set M[i, ] = 2.

Class exercise: Fill out the matrix for x =4,y = 3.



Languages

A language is a set of strings over an alphabet ¥.

> The set of all finite-length strings over an alphabet ¥ is
denoted X*.

» The set of all non-empty finite-length strings over ¥ is
denoted X T

» The length of a string is the number of characters it has
» The empty string has zero length

» If x and y are strings, we write yx to denote the
concatenation of the two strings. For example, if x = 00 and
y = 101 then xy = 00101.



A recursively defined language, L

Let L be a set of strings over {0,1} defined recursively by:
»lel
» If x e Lthen x10 € L
> If x € Lthen x0 € L

Thus, L contains only those strings that can be derived using these
rules.
Notes:

» L doesn’t contain any infinite length strings!

» All strings in L of length two or more start with 1 and end
with 0.

Question to class: does L contain every string that begins with 1
and ends with 07



The set L of strings

Let L be a set of strings over {0,1} defined recursively by:
»lel
» If x € L then x10 € L
» If x e Lthen x0 € L
Questions to class:
1.1s0eL?
Is1l e L?
Is 10110 € L?
Find all strings of length up to 3 that are in L.

AR

Give one string in L of length 10.



DP algorithm to determine if x € L

Let's design a DP algorithm to determine if x € L where x is a
binary string.

Let x € {0,1}" be given as input (so x is not the empty string).

We define the length of x to be the number of characters in x. For
example, if x = 011001 then the length of x is 6.

We write x[i] to denote the i letter of x and x[1...i] to denote
the prefix of x ending at x][i].

For example, if x = 011001 then x[4] = 0 and x[1..4] = 0110.



DP algorithm to determine if x € L, continued

If the length of x is at most 2, we return True if and only if

x € {1,10}.

For all other strings x, we will compute an array M[1...n] where n
is the length of x, and where

M[i] = True if and only if x[1...i/] € L.

We will then return M[n]!

Basic challenge: how shall we calculate the array M?



DP algorithm to determine if x € L

Computing the array M([1...n] where n > 2 is the length of x:
» M[1] = [x][1] = 1]
> M[2] = [(x[1] = 1) A (x[2] = 0)]
» For i := 3 up to n, we set M[i] = True if and only if at least
one of the following is True:
» M[i — 1] A (x[i] = 0)
» M[i —2JA(x[[]=0)A (x[i = 1] =1)
What are the entries of M when x = 1107 What about x = 1007



The DP algorithm

Input: x € {0,1}
Output: True or False (i.e., whether x € L)
Algorithm:
» If length(x) < 2, Return (x € {1,10})
» Else compute M[1...n], where n = length(x), and Return
(MIn])
Questions:
> Is this algorithm correct? Could you prove it correct?
» What is the running time?
Class exercise: Compute M([1...6] for x = 111000 and y = 1000100



