CS173
 Designing DP algorithms and proving them correct

Tandy Warnow

CS 173
Designing DP algorithms and proving them correct Tandy Warnow

DP algorithms you've already seen

September 27

- Fibonacci numbers
- Coin changing problem

September 29

- DP algorithm for computing the longest increasing substring
- DP algorithm for finding a longest increasing subsequence

October 2

- DP algorithm for computing All Pairs Shortest Paths in graph

Are these algorithms correct?
Can we prove these algorithms correct?

Dynamic Programming to compute $F(n)$

Let $F(n)$ denote the $n^{\text {th }}$ Fibonacci number:
Input: n, positive integer
Output: F(n)
Fill in an array, FIB[1...n] as follows:

- $\operatorname{FIB}[1]:=1$
- $\operatorname{FIB}[2]:=1$
- For $i:=3$ up to n do:
- $F I B[i]:=F I B[i-1]+F I B[i-2]$
- Return FIB[n]

Recall we analyzed the running time and showed it was $O(n)$ to compute FIB[n].
Let's prove that $F I B[n]$ is the same as $F(n)$, the $n^{\text {th }}$ Fibonacci number.

Proving the DP algorithm correct

Let $F(n)$ be the $n^{\text {th }}$ Fibonacci number, defined recursively by

- $F(1)=F(2)=1$ and
- $F(n)=F(n-1)+F(n-2)$ for $n \geq 3$

We prove that $F(n)=F I B[n]$ by strong induction on n.
Let $P(N)$ denote the statement $\forall n \in \mathbb{Z}^{+}, n \leq N, F I B[n]=F(n)$.
By definition, $\operatorname{FIB}[n]=F(n)$ for $n=1,2$, so the two base cases are true.

We have shown $P(1)$ and $P(2)$ is true (our base cases).
Our Strong Inductive Hypothesis is that $P(N)$ is true for some arbitrary $N \geq 2$.

We wish to prove that $P(N+1)$ is true.
In other words, we wish to prove that $F I B[N+1]=F(N+1)$.

Proving the DP algorithm for Fibonacci is correct

To prove that $\operatorname{FIB}[N+1]=F(N+1)$, note that $N \geq 2$ so $N+1 \geq 3$.

Hence $F I B[N+1]=F I B[N]+F I B[N-1]$, by the DP algorithm.
By the inductive hypothesis $F I B[N]=F(N)$ and $F I B[N-1]=F(N-1)$, and so $F I B[N+1]=F(N)+F(N-1)$.

Hence, $F I B[N+1]=F(N+1)$, by the definition of the Fibonacci numbers.

Since N was arbitrary, by the Principle of Mathematical Induction, $F I B[N]=F(N)$ for all non-negative integers N.

Other applications of Dynamic Programming

We have already shown DP algorithms for some other problems, such as:

- Coin changing problem
- Computing the longest increasing substring in a sequence
- Finding the longest increasing subsequence in a sequence
- Finding all-pairs shortest paths in an edge-weighted graph

You can also find DP algorithms online for:

- Longest common subsequence of two sequences
- Minimum edit distance between two strings (where insertions, deletions, and substitutions each cost 1)
- Biology problem: optimal pairwise alignment between two DNA sequences (corresponds to minimum edit distance)
- Biology problem: maximum parsimony on a tree Let's do DP for a two-person game.

DP algorithm for a two-person game

Suppose we have a two-person game, as follows.

- There are two piles of rocks.
- Each player picks a pile and then takes 1 or 2 two rocks off that pile.
- The person who takes the last rock off wins.

Use DP to determine which player has a winning strategy when the starting condition has x rocks on pile 1 and y rocks on pile 2 .

DP algorithm for two-person game

Consider the starting condition (x, y) to mean that pile 1 has x rocks and pile 2 has y rocks.

Define a matrix $M[0 \ldots x, 0 \ldots y]$ by

- $M[0,0]=2$
- If $i+j>0$ then $M[i, j]$ is 1 if and only if Player 1 has a winning strategy for starting condition (i, j).

Questions to class:

- What is $M[1,0]$?
- What is $M[2,0]$?
- What is $M[3,0]$?
- What is $M[1,1]$?

How should $M[i, j]$ be defined, algorithmically?

DP algorithm for two-person game

Key observation: Player 1 has a winning strategy if and only if she can move to a condition where player 2 has a winning strategy (because she becomes player 2 after she moves).

Remember that each player picks a pile and then takes 1 or 2 rocks off the pile.

Hence, we should set $M[i, j]$ to 1 if and only if at least one of the following is set to 2 :

- $M[i-1, j]$
- $M[i-2, j]$
- $M[i, j-1]$
- $M[i, j-2]$

Of course, you need to make sure to check if these value are out of bound or not.

Finishing the DP algorithm

Given starting condition x, y with $0 \leq x, y$ and $x+y>0$, we fill out the matrix $M[.,$.$] as follows:$

- We set $M[0,0]$ to 2
- We set $M[1,0], M[2,0], M[0,1]$, and $M[0,2]$ all to 1 (these are the cases where Player 1 wins immediately).
- For all other pairs i, j with $i \leq x$ and $j \leq y$, we set $M[i, j]$ to 1 if and only if at least one of the following is set to 2 :
- $M[i-1, j]$
- $M[i-2, j]$
- $M[i, j-1]$
- $M[i, j-2]$

Otherwise, we set $M[i, j]=2$.
Class exercise: Fill out the matrix for $x=4, y=3$.

Languages

A language is a set of strings over an alphabet Σ.

- The set of all finite-length strings over an alphabet Σ is denoted Σ^{*}.
- The set of all non-empty finite-length strings over Σ is denoted Σ^{+}
- The length of a string is the number of characters it has
- The empty string has zero length
- If x and y are strings, we write $y x$ to denote the concatenation of the two strings. For example, if $x=00$ and $y=101$ then $x y=00101$.

A recursively defined language, L

Let L be a set of strings over $\{0,1\}$ defined recursively by:

- $1 \in L$
- If $x \in L$ then $x 10 \in L$
- If $x \in L$ then $x 0 \in L$

Thus, L contains only those strings that can be derived using these rules.
Notes:

- L doesn't contain any infinite length strings!
- All strings in L of length two or more start with 1 and end with 0 .
Question to class: does L contain every string that begins with 1 and ends with 0 ?

The set L of strings

Let L be a set of strings over $\{0,1\}$ defined recursively by:

- $1 \in L$
- If $x \in L$ then $x 10 \in L$
- If $x \in L$ then $x 0 \in L$

Questions to class:

1. Is $0 \in L$?
2. Is $11 \in L$?
3. Is $10110 \in L$?
4. Find all strings of length up to 3 that are in L.
5. Give one string in L of length 10 .

DP algorithm to determine if $x \in L$

Let's design a DP algorithm to determine if $x \in L$ where x is a binary string.

Let $x \in\{0,1\}^{+}$be given as input (so x is not the empty string).
We define the length of x to be the number of characters in x. For example, if $x=011001$ then the length of x is 6 .

We write $x[i]$ to denote the $i^{\text {th }}$ letter of x and $x[1 \ldots i]$ to denote the prefix of x ending at $x[i]$.

For example, if $x=011001$ then $x[4]=0$ and $x[1 . .4]=0110$.

DP algorithm to determine if $x \in L$, continued

If the length of x is at most 2 , we return True if and only if $x \in\{1,10\}$.
For all other strings x, we will compute an array $M[1 \ldots n]$ where n is the length of x, and where

$$
M[i]=\text { True if and only if } x[1 \ldots i] \in L .
$$

We will then return $M[n]$!
Basic challenge: how shall we calculate the array M ?

DP algorithm to determine if $x \in L$

Computing the array $M[1 \ldots n]$ where $n>2$ is the length of x :

- $M[1]:=[x[1]=1]$
- $M[2]:=[(x[1]=1) \wedge(x[2]=0)]$
- For $i:=3$ up to n, we set $M[i]=$ True if and only if at least one of the following is True:
- $M[i-1] \wedge(x[i]=0)$
- $M[i-2] \wedge(x[i]=0) \wedge(x[i-1]=1)$

What are the entries of M when $x=110$? What about $x=100$?

The DP algorithm

Input: $x \in\{0,1\}^{+}$
Output: True or False (i.e., whether $x \in L$)
Algorithm:

- If length $(x) \leq 2$, Return $(x \in\{1,10\})$
- Else compute $M[1 \ldots n]$, where $n=$ length (x), and Return (M[n])
Questions:
- Is this algorithm correct? Could you prove it correct?
- What is the running time?

Class exercise: Compute $M[1 . .6]$ for $x=111000$ and $y=1000100$

