CS173

Countability and Cardinality

Tandy Warnow

November 17, 2018

CS 173
Cardinality and Countability
Tandy Warnow

Today

- Cardinality of infinite sets
- Countability and how to prove that a set is countable
- Uncountability, and how to prove that a set is not countable This material will be on the final exam. (CS 374 assumes you know this material!)

Finite Sets

The cardinality of a finite set X is the number of elements in X, and is denoted $|X|$.

Hence, $|\{1,2,3,4,5\}|=|\{2,9,12,17,18\}|$.
A set X is finite if $|X|=n$ for some $n \in Z$.

Infinite Sets

A set X is infinite if there does not exist any $n \in Z$ so that $|X|=n$.
Formal definition: A set X is infinite if $\exists Y \subset X$ (i.e., Y is a proper subset of X) and a 1-1 function $f: X \rightarrow Y$.

Examples:

- Let E denote the set of even integers and let $f: \mathbb{Z} \rightarrow E$ be defined by $f(x)=2 x$.
- Let $g: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{\geq 5}$ be defined by $g(x)=x+5$

Each of these is a 1-1 function from a set A to a proper subset of A. Hence the set A is infinite.

We say that $|X| \leq|Y|$ if there is a 1-1 function $g: X \rightarrow Y$.

Cardinality of infinite sets

We will say that $|X|=|Y|$ if $\exists f: X \rightarrow Y$ where f is a bijection.
A set X is countably infinite if there is a bijection from X to \mathbb{N}. Using the prior notation, we say X is countably infinite if $|X|=|\mathbb{N}|$.

A set is countable if it is finite or countable infinite.
We will prove that $|\mathbb{N}|=|\mathbb{Z}|=\left|\mathbb{Z}^{+}\right|($where $\mathbb{N}=\{0,1,2, \ldots\})$.

Proof that $|\mathbb{Z}|=|\mathbb{N}|$

We prove that $|\mathbb{Z}|=|\mathbb{N}|$ by establishing a bijection from \mathbb{Z} to \mathbb{N}.
We will send the non-negative integers to the even natural numbers, and the negative integers to the odd natural numbers.

- $f(x)=2 x$ when $x \geq 0$
- $f(x)=2|x|-1$ when $x<0$

It is clear that f maps integers to natural numbers. To complete the proof:

- We need to prove that f is $1-1$
- We need to prove that f is onto

Proving f is $1-1$

Recall $f: \mathbb{Z}$ to \mathbb{N} is defined by

- $f(x)=2 x$ when $x \geq 0$
- $f(x)=2|x|-1$ when $x<0$

We prove that f is $1-1$ by contradiction. If f is not $1-1$, then $\exists\{a, b\} \subset \mathbb{Z}$ such that $f(a)=f(b)$.

Since $f(x)$ is odd if and only if x is negative, it must be that a and b are both negative or both non-negative.

Proving f is $1-1$

Case 1: $a, b \geq 0$.
Then $[f(a)=f(b)] \rightarrow[2 a=2 b] \rightarrow[a=b]$.
Case 2: $a, b<0$.
Then $[f(a)=f(b)] \rightarrow[2|a|-1=2|b|-1] \rightarrow[|a|=|b|]$
If both a, b are negative, then $[|a|=|b|] \rightarrow[a=b]$.
If $a=0$ then $|a|=0$ and so $b=0$ (and similarly for the case where $b=0$).

Hence $[f(a)=f(b)] \rightarrow[a=b]$ and so f is $1-1$.

Proving f is onto

Recall that we need to prove that f is a bijection from \mathbb{Z} to \mathbb{N}, where

- $f(x)=2 x$ when $x \geq 0$
- $f(x)=2|x|-1$ when $x<0$

To prove that f is onto we need to show that for any $b \in \mathbb{N}$ there is some $a \in \mathbb{Z}$ such that $f(a)=b$.
Case: b is odd. Then $b=2 x+1$ for some $x \in \mathbb{Z}^{+}$.
Let $a=-(x+1)$. Then

$$
f(a)=2|a|-1=2(x+1)-1=2 x+1=b
$$

Case: b is even. Then $b=2 x$ for some $x \in \mathbb{Z} \geq 0$. Then

$$
f(x)=2 x=b
$$

Hence f is onto.

Other bijections

Similarly, you can come up with bijections between every other pair of the sets \mathbb{N}, \mathbb{Z} and \mathbb{Z}^{+}, to prove that they all have the same cardinality.

Note you need to prove that the function is a bijection (i.e., that it is $1-1$ and onto).

What isn't countable?

Can we prove that some set is not countable?

Uncountable sets

A set X is uncountable if X is infinite but $|X| \neq|\mathbb{N}|$.
Examples:

- $[0,1]$
- \mathbb{R}
- $\mathbb{P}(\mathbb{N})$
- The set of functions from \mathbb{N} to $\{0,1\}$
- The set of all infinite length binary strings

Furthermore, for any set A that is listed above, then

- Any set X that contains A as a subset is uncountable
- Any set X that contains a subset Y where $|Y|=|A|$ is uncountable

Why $\mathbb{P}(\mathbb{N})$ is uncountable

The proof that $\mathbb{P}(\mathbb{N})$ is uncountable is in the book, but we'll go over it here.

Why $\mathbb{P}(\mathbb{N})$ is uncountable

Proof by contradiction.
If $\mathbb{P}(\mathbb{N})$ is countable, then there is a bijection between $\mathbb{P}(\mathbb{N})$ and \mathbb{N}, and so we can list these sets $A_{0}, A_{1}, A_{2}, \ldots$
We will write down these sets in a matrix format with entries 0 and
1 , where A_{i} is represented by $i^{t h}$ row.
Hence, $M[i, j]=1$ if and only if $j \in A_{i}$.

The matrix M

Recall that $M[i, j]=1$ if and only if $j \in A_{i}$.
Example: let's suppose that the first four sets are $A_{0}=\{0,3,5\}$, $A_{1}=\{2,3\}, A_{2}=\emptyset, A_{3}=\{x \in \mathbb{N}: x \geq 3\}$

What do the first four rows of the matrix M look like?

The matrix M

Recall that $M[i, j]=1$ if and only if $j \in A_{i}$.
Example: let's suppose that the first four sets are $A_{0}=\{0,3,5\}$, $A_{1}=\{2,3\}, A_{2}=\emptyset, A_{3}=\{x \in \mathbb{N}: x \geq 3\}$

Let's construct $Y \subseteq\{0,1,2,3\}$ so that $i \in Y$ if and only if $i \notin A_{i}$ for $i=0,1,2,3$. What is Y ?

Diagonalization argument

We prove $\mathbb{P}(\mathbb{N})$ is uncountable using a diagonalization argument.
Consider the infinite matrix representing $\mathbb{P}(\mathbb{N})$.
By construction, every subset of \mathbb{N} is represented by some row in the matrix.

Consider the set Y defined by $j \in Y$ if and only if $M_{j, j}=0$.
Note that Y is a subset of \mathbb{N}.

Finishing the proof

Now we derive the contradiction!

- We assumed that the set $\mathbb{P}(\mathbb{N})$ is countable, and that matrix M has a row for every element in the set.
- We defined the set $Y \in \mathbb{P}(\mathbb{N})$ by $j \in Y$ if and only if $j \notin A_{j}$ for all $j \in \mathbb{N}$.
- Hence for all $j \in \mathbb{N}, Y \neq A_{j}$.
- Therefore the matrix M cannot have a row for every element of $\mathbb{P}(\mathbb{N})$.
- Hence we derive a contradiction.

Proving a set X is uncountable

To prove a set X is uncountable, do one of the following:

- The same kind of proof by contradiction - enumeration and diagonalization
- Prove that $|X|=|Y|$ where Y is uncountable
- Find an uncountable set Y and show that $Y \subset X$
- Find an uncountable set Y and a 1-1 function from Y to X; this is denoted by $|Y| \leq|X|$

Class Exercise

Prove the set S of infinite length binary strings is uncountable.
Hint: Recall the proof that $\mathbb{P}(\mathbb{N})$ is uncountable.
Suppose S is countable, and then write its matrix representation $M[i, j]$ where the $i^{\text {th }}$ row denotes the $i^{\text {th }}$ string in S, and $M[i, j]$ is the value (0 or 1) of the $j^{t h}$ character in that string.

When is $A \times B$ countable?

Suppose A and B are both countable sets. Is $A \times B$ countable?
Let $A=\left\{a_{1}, a_{2}, \ldots\right\}$ and $B=\left\{b_{1}, b_{2}, \ldots\right\}$ be the enumeration of these sets.

Can we enumerate this set so that every element appears in some finite index?

When is $A \times B$ countable?

Consider the infinite matrix $M[i, j]$ where $M[i, j]$ corresponds to the ordered pair $\left(a_{i}, b_{j}\right)$.

Consider the enumeration of the set $A \times B$, given by going down short diagonals (right to left, decreasing):

- $M[1,1]$
- $M[1,2], M[2,1]$
- $M[1,3], M[2,2], M[3,1]$
- $M[1,4], M[2,3], M[3,2], M[4,1]$
- etc.

Note that every element of $A \times B$ appears at some finite index, and so enumeration defines a bijection between the elements of $A \times B$ and Z^{+}.

Hence if A and B are countable, then $A \times B$ is countable.

General properties

- If $|X| \leq|Y|$ and Y is countable, then X is countable (recall that $|X| \leq|Y|$ means there is a 1-1 function from X to Y).
- If $X_{1}, X_{2}, \ldots, X_{k}$ are each countable, then $\prod_{i} X_{i}$ is countable.
- If $X_{1}, X_{2}, \ldots, X_{k}$ are each countable, then $\cup_{i} X_{i}$ is countable.

Hence $\mathbb{Z} \times \mathbb{Z}$ and \mathbb{Q} are both countable.

Class Exercise

For each of these sets, determine if it is finite, countably infinite, or uncountable.

- \mathbb{Q}
- The union of two countable sets
- $\bigcup_{i=1}^{\infty} A_{i}$ where A_{i} is finite for all $i \in \mathbb{Z}^{+}$.
- The set of all finite length binary strings
- The set of functions from A to X, where A is countably infinite and X is finite (e.g., $A=\mathbb{Z}$ and $X=\{1,2,3\}$).
- The set of functions from X to A, where A is countably infinite and X is finite (e.g., $A=\mathbb{Z}$ and $X=\{1,2,3\}$).
- $\mathbb{P}(Y)$, where Y is a finite set
- $\mathbb{P}(Y)$, where Y is a countably infinite set
- \mathbb{R}
- $\mathbb{R} \backslash \mathbb{Q}$

Cantor-Schroeder-Bernstein Theorem

The Cantor-Schroeder-Bernstein Theorem theorem shows that for any two sets $A, B,|A|=|B|$ whenever you can find two $1-1$ functions, one from A to B, and the other from B to A.

More specifically, they show that if you have two $1-1$ functions, then there is a bijection between the two sets.

Finding two $1-1$ functions is generally easier to do than finding a bijection.

Using Cantor-Schroeder-Bernstein Theorem

For example, to prove $|\mathbb{N}|=|\mathbb{Z}|$, we can write

- $f: \mathbb{N} \rightarrow \mathbb{Z}$, where $f(x)=x$
- $g: \mathbb{Z} \rightarrow \mathbb{N}$, where
- $g(x)=2 x$ if $x \geq 0$
- $g(x)=2|x|+1$ if $x<0$

It's easy to see that f and g are both $1-1$, so by the
Cantor-Schroeder-Bernstein theorem, $|\mathbb{N}|=|\mathbb{Z}|$.

Cardinality of infinite sets

Consider the binary relation on sets $(X, Y) \in R$ if and only if $|X|=|Y|$.
Note that $|A|=|B|$ and $|B|=|C|$ implies that $|A|=|C|$. It is easy to see that R is an equivalence relation!

Summary

What we covered today:

- Definition of cardinality for infinite sets
- Definition of countability
- Definition of uncountability
- Diagonalization proofs for uncountability
- Other techniques for proving uncountability
- Cantor-Schroeder-Bernstein Theorem
- How to prove countability

