CS173 Countability and Cardinality

Tandy Warnow

November 17, 2018

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

CS 173 Cardinality and Countability Tandy Warnow

Today

- Cardinality of infinite sets
- Countability and how to prove that a set is countable
- Uncountability, and how to prove that a set is not countable

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

This material will be on the final exam. (CS 374 assumes you know this material!)

Finite Sets

The **cardinality** of a finite set X is the number of elements in X, and is denoted |X|.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Hence, $|\{1, 2, 3, 4, 5\}| = |\{2, 9, 12, 17, 18\}|$.
- A set X is **finite** if |X| = n for some $n \in Z$.

Infinite Sets

A set X is **infinite** if there does not exist any $n \in Z$ so that |X| = n.

Formal definition: A set X is infinite if $\exists Y \subset X$ (i.e., Y is a proper subset of X) and a 1-1 function $f : X \to Y$.

Examples:

Let E denote the set of even integers and let f : Z → E be defined by f(x) = 2x.

• Let $g: \mathbb{Z}^+ \to \mathbb{Z}^{\geq 5}$ be defined by g(x) = x + 5

Each of these is a 1-1 function from a set A to a proper subset of A. Hence the set A is infinite.

We say that $|X| \leq |Y|$ if there is a 1-1 function $g : X \to Y$.

Cardinality of infinite sets

We will say that |X| = |Y| if $\exists f : X \to Y$ where f is a bijection.

A set X is **countably infinite** if there is a bijection from X to \mathbb{N} . Using the prior notation, we say X is countably infinite if $|X| = |\mathbb{N}|$.

A set is **countable** if it is finite or countable infinite.

We will prove that $|\mathbb{N}| = |\mathbb{Z}| = |\mathbb{Z}^+|$ (where $\mathbb{N} = \{0, 1, 2, \ldots\}$).

Proof that $|\mathbb{Z}| = |\mathbb{N}|$

We prove that $|\mathbb{Z}| = |\mathbb{N}|$ by establishing a bijection from \mathbb{Z} to \mathbb{N} .

We will send the non-negative integers to the even natural numbers, and the negative integers to the odd natural numbers.

•
$$f(x) = 2x$$
 when $x \ge 0$

•
$$f(x) = 2|x| - 1$$
 when $x < 0$

It is clear that f maps integers to natural numbers. To complete the proof:

- We need to prove that f is 1-1
- We need to prove that f is onto

Proving f is 1-1

Recall $f : \mathbb{Z}$ to \mathbb{N} is defined by

•
$$f(x) = 2x$$
 when $x \ge 0$

•
$$f(x) = 2|x| - 1$$
 when $x < 0$

We prove that f is 1-1 by contradiction. If f is not 1-1, then $\exists \{a, b\} \subset \mathbb{Z}$ such that f(a) = f(b).

Since f(x) is odd if and only if x is negative, it must be that a and b are both negative or both non-negative.

Proving f is 1-1

Case 1: a, b > 0. Then $[f(a) = f(b)] \rightarrow [2a = 2b] \rightarrow [a = b]$. Case 2: *a*, *b* < 0. Then $[f(a) = f(b)] \rightarrow [2|a| - 1 = 2|b| - 1] \rightarrow [|a| = |b|]$ If both a, b are negative, then $[|a| = |b|] \rightarrow [a = b]$. If a = 0 then |a| = 0 and so b = 0 (and similarly for the case where b = 0).

Hence $[f(a) = f(b)] \rightarrow [a = b]$ and so f is 1 - 1.

Proving f is onto

Recall that we need to prove that f is a bijection from \mathbb{Z} to \mathbb{N} , where

•
$$f(x) = 2x$$
 when $x \ge 0$

•
$$f(x) = 2|x| - 1$$
 when $x < 0$

To prove that f is onto we need to show that for any $b \in \mathbb{N}$ there is some $a \in \mathbb{Z}$ such that f(a) = b. Case: b is odd. Then b = 2x + 1 for some $x \in \mathbb{Z}^+$.

Let
$$a = -(x + 1)$$
. Then
 $f(a) = 2|a| - 1 = 2(x + 1) - 1 = 2x + 1 = b$

Case: *b* is even. Then b = 2x for some $x \in \mathbb{Z}^{\geq 0}$. Then

$$f(x)=2x=b$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Hence *f* is onto.

Other bijections

Similarly, you can come up with bijections between every other pair of the sets \mathbb{N},\mathbb{Z} and \mathbb{Z}^+ , to prove that they all have the same cardinality.

Note you need to **prove** that the function is a bijection (i.e., that it is 1-1 and onto).

What isn't countable?

Can we prove that some set is **not** countable?

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Uncountable sets

A set X is uncountable if X is infinite but $|X| \neq |\mathbb{N}|$. Examples:

- ► [0,1]
- $\triangleright \mathbb{R}$
- ► P(N)
- \blacktriangleright The set of functions from $\mathbb N$ to $\{0,1\}$
- The set of all infinite length binary strings

Furthermore, for any set A that is listed above, then

- Any set X that contains A as a subset is uncountable
- Any set X that contains a subset Y where |Y| = |A| is uncountable

Why $\mathbb{P}(\mathbb{N})$ is uncountable

The proof that $\mathbb{P}(\mathbb{N})$ is uncountable is in the book, but we'll go over it here.

Proof by contradiction.

If $\mathbb{P}(\mathbb{N})$ is countable, then there is a bijection between $\mathbb{P}(\mathbb{N})$ and \mathbb{N} , and so we can list these sets A_0, A_1, A_2, \ldots

We will write down these sets in a matrix format with entries 0 and 1, where A_i is represented by i^{th} row.

Hence, M[i, j] = 1 if and only if $j \in A_i$.

The matrix M

Recall that M[i, j] = 1 if and only if $j \in A_i$. Example: let's suppose that the first four sets are $A_0 = \{0, 3, 5\}$, $A_1 = \{2, 3\}$, $A_2 = \emptyset$, $A_3 = \{x \in \mathbb{N} : x \ge 3\}$

What do the first four rows of the matrix M look like?

Recall that M[i,j] = 1 if and only if $j \in A_i$.

Example: let's suppose that the first four sets are $A_0 = \{0, 3, 5\}$, $A_1 = \{2, 3\}$, $A_2 = \emptyset$, $A_3 = \{x \in \mathbb{N} : x \ge 3\}$

Let's construct $Y \subseteq \{0, 1, 2, 3\}$ so that $i \in Y$ if and only if $i \notin A_i$ for i = 0, 1, 2, 3. What is Y?

We prove $\mathbb{P}(\mathbb{N})$ is uncountable using a diagonalization argument.

Consider the infinite matrix representing $\mathbb{P}(\mathbb{N})$.

By construction, every subset of $\ensuremath{\mathbb{N}}$ is represented by some row in the matrix.

Consider the set Y defined by $j \in Y$ if and only if $M_{j,j} = 0$.

Note that Y is a subset of \mathbb{N} .

Finishing the proof

Now we derive the contradiction!

- We assumed that the set P(N) is countable, and that matrix M has a row for every element in the set.
- ▶ We defined the set $Y \in \mathbb{P}(\mathbb{N})$ by $j \in Y$ if and only if $j \notin A_j$ for all $j \in \mathbb{N}$.
- Hence for all $j \in \mathbb{N}$, $Y \neq A_j$.
- ► Therefore the matrix *M* cannot have a row for every element of P(N).

Hence we derive a contradiction.

To prove a set X is uncountable, do one of the following:

- The same kind of proof by contradiction enumeration and diagonalization
- Prove that |X| = |Y| where Y is uncountable
- Find an uncountable set Y and show that $Y \subset X$
- ► Find an uncountable set Y and a 1-1 function from Y to X; this is denoted by |Y| ≤ |X|

Prove the set S of infinite length binary strings is uncountable.

Hint: Recall the proof that $\mathbb{P}(\mathbb{N})$ is uncountable.

Suppose S is countable, and then write its matrix representation M[i,j] where the i^{th} row denotes the i^{th} string in S, and M[i,j] is the value (0 or 1) of the j^{th} character in that string.

Suppose A and B are both countable sets. Is $A \times B$ countable? Let $A = \{a_1, a_2, ...\}$ and $B = \{b_1, b_2, ...\}$ be the enumeration of these sets.

Can we enumerate this set so that every element appears in some finite index?

When is $A \times B$ countable?

Consider the infinite matrix M[i, j] where M[i, j] corresponds to the ordered pair (a_i, b_j) .

Consider the enumeration of the set $A \times B$, given by going down short diagonals (right to left, decreasing):

- ▶ *M*[1,1]
- ► *M*[1,2], *M*[2,1]
- ▶ *M*[1,3], *M*[2,2], *M*[3,1]
- ▶ *M*[1,4], *M*[2,3], *M*[3,2], *M*[4,1]

etc.

Note that every element of $A \times B$ appears at some finite index, and so enumeration defines a bijection between the elements of $A \times B$ and Z^+ .

Hence if A and B are countable, then $A \times B$ is countable.

General properties

- If |X| ≤ |Y| and Y is countable, then X is countable (recall that |X| ≤ |Y| means there is a 1-1 function from X to Y).
- If X_1, X_2, \ldots, X_k are each countable, then $\prod_i X_i$ is countable.
- ▶ If X_1 , X_2 , ..., X_k are each countable, then $\cup_i X_i$ is countable.

Hence $\mathbb{Z}\times\mathbb{Z}$ and \mathbb{Q} are both countable.

Class Exercise

For each of these sets, determine if it is finite, countably infinite, or uncountable.

 $\blacktriangleright \mathbb{Q}$

- The union of two countable sets
- $\bigcup_{i=1}^{\infty} A_i$ where A_i is finite for all $i \in \mathbb{Z}^+$.
- The set of all finite length binary strings
- ► The set of functions from A to X, where A is countably infinite and X is finite (e.g., A = Z and X = {1,2,3}).
- ► The set of functions from X to A, where A is countably infinite and X is finite (e.g., A = Z and X = {1,2,3}).

- $\mathbb{P}(Y)$, where Y is a finite set
- $\mathbb{P}(Y)$, where Y is a countably infinite set
- $\triangleright \mathbb{R}$
- $\blacktriangleright \ \mathbb{R} \setminus \mathbb{Q}$

The **Cantor-Schroeder-Bernstein Theorem** theorem shows that for any two sets A, B, |A| = |B| whenever you can find two 1 - 1 functions, one from A to B, and the other from B to A.

More specifically, they show that if you have two 1-1 functions, then there is a *bijection* between the two sets.

Finding two 1-1 functions is generally easier to do than finding a bijection.

Using Cantor-Schroeder-Bernstein Theorem

For example, to prove $|\mathbb{N}|=|\mathbb{Z}|,$ we can write

- $f : \mathbb{N} \to \mathbb{Z}$, where f(x) = x
- $g : \mathbb{Z} \to \mathbb{N}$, where

•
$$g(x) = 2x$$
 if $x \ge 0$

•
$$g(x) = 2|x| + 1$$
 if $x < 0$

It's easy to see that f and g are both 1-1, so by the Cantor-Schroeder-Bernstein theorem, $|\mathbb{N}| = |\mathbb{Z}|$.

Cardinality of infinite sets

Consider the binary relation on sets $(X, Y) \in R$ if and only if |X| = |Y|. Note that |A| = |B| and |B| = |C| implies that |A| = |C|. It is easy to see that R is an equivalence relation!

Summary

What we covered today:

- Definition of cardinality for infinite sets
- Definition of countability
- Definition of uncountability
- Diagonalization proofs for uncountability
- Other techniques for proving uncountability

- Cantor-Schroeder-Bernstein Theorem
- How to prove countability