
CS173, Minimum Spanning Tree Algorithms

Tandy Warnow

December 5, 2018



CS 173
Minimum Spanning Tree Algorithms
Tandy Warnow



Today’s agenda

Tuesday we did:

I Minimum spanning tree (MST)

I Algorithms for MST construction

I 2-approximation for Triangle-TSP (Travelling Salesman
Problem)

Today we will prove Kruskal’s algorithm correct

If we have time, we’ll also see a 2-approximation for Minimum
Vertex Cover!



Spanning Trees

A spanning tree of a connected graph G = (V ,E ) is a subgraph
that includes all the vertices and is a tree.



Minimum Spanning Trees (MST)
I Input: Connected graph G = (V ,E ) and positive edge

weights w : E → Z+

I Output: Spanning tree T = (V ,E ′) of G that has minimum
cost, where cost(T ) = Σe∈E ′w(e)



Finding MSTs

Try one of the greedy algorithms on the complete bipartite graph
K3,5 with w(vi ,wj) = i + j :

I Keep adding the least weight edges (don’t include those that
create cycles) - Kruskal’s algorithm

I Keep deleting the most costly edges (don’t delete bridges)

I Grow a spanning tree, adding least costly edge to an unvisited
vertex - Prim’s algorithm



Finding MSTs

Running Kruskal’s algorithm on K3,5 with weight w(vi ,wj) = i + j :



Why does Kruskal’s algorithm work?

We will prove that Kruskal’s algorithm always returns a minimum
cost spanning tree, when the input is a connected graph with
positive edge weights.

Fairly straightforward to see that Kruskal’s algorithm returns a
spanning tree.

Now we show that the spanning tree output by Kruskal’s algorithm
has minimum cost.



Why does Kruskal’s algorithm work?

We show that the spanning tree returned by Kruskal’s algorithm
has minimum cost for the special case where no two edges have
the same weight.



Why does Kruskal’s algorithm work?

Let G = (V ,E ) be a connected graph in which every two edges
have different weights.

Let T be the spanning tree returned by Kruskal’s algorithm and
T ∗ be a minimum spanning tree.

We prove T = T ∗ by contradiction!

If T 6= T ∗, then T ∗ has at least one edge that is not in T .

Let e be any such edge in T ∗ that is not in T .



Why does Kruskal’s algorithm work?

Remember e = (x , y) ∈ E (T ∗) \ E (T )

Since e is not in E (T ), it must be that when e is considered it
would create a cycle if added to T .

If we add e to T we obtain a cycle γ and T has a path P from x
to y given by x , v1, v2, . . . , vk , y .

Because e 6∈ E (T ), it must be that w(e) > w(e ′) for all e ′ ∈ E (P)
(otherwise Kruskal’s algorithm would have added e).



Why does Kruskal’s algorithm work?

We have shown: e = (x , y) ∈ E (T ∗) \ E (T ) and w(e) > w(e ′) for
all edges on the path P between x and y in T .

Consider T ∗ − e (the graph obtained by deleting the edge e from
T ∗).

It has two components, A and B, with x ∈ A and y ∈ B. Also, no
edge in T ∗ besides e has an endpoint in A and another endpoint in
B.



Why does Kruskal’s algorithm work?

T ∗ − e has two components, A and B, with x ∈ A and y ∈ B.

Let f be an in P has an endpoint in A and an endpoint in B.

Note that f 6∈ E (T ∗)

Remember we showed w(f ) < w(e)

Think about T ∗∗ = T ∗ − e + f (the graph obtained by deleting e
from T ∗ and adding f )



Why does Kruskal’s algorithm work?

Remember: T ∗∗ = T ∗ − e had two components A and B, and f
also connects these two components.

Therefore T ∗∗ is a spanning tree for G

Remember we showed w(f ) < w(e)

Therefore w(T ∗∗) = w(T ∗)− w(e) + w(f ) < w(T ∗)

This contradicts T ∗ being a MST!

Hence T is a MST!



Why does Kruskal’s algorithm work?

We summarize the proof by contradiction:

I We let T ∗ be a MST different from T

I We took any edge e from T ∗ that wasn’t in T , and we added
it to T

I We argued this created a cycle γ and that e had to be the
heaviest edge in γ

I We argued there was an edge f in γ that isn’t in T ∗ and we
could add it to T ∗ − e and get a spanning tree that had
smaller weight

I Hence we obtained a contradiction



What we showed

We showed that if all edges have different weights, then there is
only one MST, and Kruskal’s algorithm produces it.

If edges can have the same weight, a slightly different proof is
needed to show that Kruskal’s algorithm produces a tree with the
same optimal weight.


