
CS173
Longest Increasing Substrings

Tandy Warnow



CS 173
Longest Increasing Substrings
Tandy Warnow



Today’s material

I The Longest Increasing Subsequence problem

I DP algorithm for finding a longest increasing substring



Dynamic Programming

Dynamic programming is an algorithmic design technique that can
make it easy to solve problems efficiently.

Dynamic programming is similar to recursion – but it is bottom-up,
instead of top-down.

Interesting applications of dynamic programming include:

I Computing the longest increasing subsequence in a sequence

I Finding the longest common subsequence of two sequences

I Finding all-pairs shortest paths in an edge-weighted graph

I Solving two-player games



Finding a Longest Increasing Subsequence

Input: sequence X = x1, x2, . . . , xn of integers
Output: longest subsequence of X that is strictly increasing

Example: X = 7, 1, 4, 3, 5, 2, 4,−1, 6, 1, 2, 5, 6, 7

Some increasing subsequences:

I 3,5

I -1,2,5

I 1,3,5,6,7

I -1,1,2,5,6,7

Maybe the last one is the longest?

Finding the longest increasing subsequence in a sequence can be
done in polynomial time using dynamic programming.

We will solve the simpler problem of finding the longest increasing
substring.



Finding a Longest Increasing Substring

Input: sequence (or array) X = x1x2 . . . xn of integers
Output: increasing substring of X that is as long as possible.

What is a substring?

I A substring is a string that begins at some xi and ends at
some xj (with j ≥ i) and includes all the intermediate
elements.

For example, x2, x3, x4 is a substring but x2, x4 is not.

Suppose X = 1, 3, 1, 8, 2, 4, 9, 2, 10, 3.

I What are some increasing substrings?

I What are some increasing subsequences?



Finding a Longest Increasing Substring

Input: sequence (or array) X = x1x2 . . . xn of integers
Output: increasing substring of X that is as long as possible.

Example: X = 1, 3, 1, 8, 2, 4, 9, 2, 10, 3 (so x1 = 1, x2 = 3, etc.)

Which of the following are increasing substrings?

1. x1

2. x5

3. x1, x3

4. x1, x2

5. x2, x3

6. x3, x4



Finding a Longest Increasing Substring

Example: X = 1, 3, 1, 8, 2, 4, 9, 2, 10, 3 (so x1 = 1, x2 = 3, etc.)

By inspection we see that the longest increasing substring is 2, 4, 9,
formed by using x5, x6, x7.

How can we design an algorithm to solve this problem?



Finding a Longest Increasing Substring
Example: X = 1, 3, 1, 8, 2, 4, 9, 2, 10, 3 (so x1 = 1, x2 = 3, etc.)

How can we design an algorithm to solve this problem?

Let M[i ] denote the length of the longest increasing substring that
ends at xi .

So:

I M[1] = 1

I M[2] = 2

I M[3] = 1

I M[4] = 2 (why isn’t it 3?)

Class exercise:

1. calculate M[i ] for i = 5, 6, 7, 8, 9, 10.

2. What is the longest increasing substring for X?

3. What index does it end at?

4. What do you see for M[i ] for that index i?



Finding a Longest Increasing Substring

Let M[i ] denote the length of the longest increasing substring that
ends at xi .

Suppose X is your arbitrary input.

How can we answer these two questions:

1. If we knew M[1],M[2], . . . ,M[n] (where n is the length of the
array), what would be the length of the longest incrasing
substring for X? Would it be M[n] or something else?

2. Can we use M[1],M[2], . . . ,M[j − 1] to compute M[j ]?



Computing M[i ]

Let M[i ] denote the length of the longest increase substring that
ends at xi .

Then how we set M[i ] depends on the value of i :

1. If i = 1 then M[i ] = 1

2. If i ≥ 2 then:
I M[i ] = 1 if xi−1 ≥ xi
I M[i ] = 1 + M[i − 1] if xi−1 < xi

Why is this correct?



Computing M[i ]

Let M[i ] denote the length of the longest increase substring that
ends at xi .
Then:

1. M[1] = 1.
I Because x1 is the longest increasing substring that ends at x1

2. M[i ] = 1 if xi−1 ≥ xi and i ≥ 2

I Because xi is the longest increasing substring ending at xi
when xi−1 ≥ xi

3. M[i ] = 1 + M[i − 1] if xi−1 < xi and i ≥ 2

I Because the longest increasing substring ending at xi in this
case is formed by appending xi to the longest increasing
substring ending at xi−1



Putting this together

Given X = x1, x2, . . . , xn, to find the length of the longest
increasing substring:

I For i = 1 up to n do:
I Compute M[i ] using rules from previous slide

I Return max{M[1],M[2],M[3], . . . ,M[n]}

Questions:

1. Why is this correct?

2. What is the running time?

3. This only gives you the length of the longest increasing
substring.

4. How do you get the longest increasing substring itself?



Writing DP algorithms

Please observe the following guidelines for writing a dynamic
programming algorithm:

I Explain your variables using English, showing what they are
supposed to mean

I Show how to compute the values for the boundary conditions

I Specify the order in which you compute the values

I Show how to compute each value based on the earlier
computations

I Show where the final answer is stored



Summary

I Dynamic programming and recursive algorithms are two ways
of dealing with algorithm design.

I One is top down (recursion) and the other is bottom-up
(dynamic programming).

I You can prove your algorithm is correct using induction, when
the algorithm uses recursion or dynamic programming.

In both cases, you identify subproblems and show how solving
subproblems lets you solve big problems.


