
CS173
More Dynamic Programming

Tandy Warnow

December 9, 2018

CS 173
More Dynamic Programming Algorithms
Tandy Warnow

Overview

Material to be covered:

I Review of Longest Increasing Substring

I How to get Longest Increasing Subsequence

I All pairs shortest path problem

I A dynamic programming algorithm to solve the all pairs
shortest path problem

Longest Increasing Substring

Input: sequence (or array) X = x1x2 . . . xn of integers
Output: increasing substring of X that is as long as possible.

Subproblem formulation:

I Let M[i] denote the length of the longest increasing substring
that ends at xi .

Computing M[i]

Let M[i] denote the length of the longest increase substring that
ends at xi .

Then how we set M[i] depends on the value of i :

1. If i = 1 then M[i] := 1

2. If i ≥ 2 then:
I M[i] := 1 if xi−1 ≥ xi
I M[i] := 1 + M[i − 1] if xi−1 < xi

Why is this correct?

DP Algorithm for Longest Increasing Substring

Given X = x1, x2, . . . , xn, to find the length of the longest
increasing substring:

I M[1] := 1
I For i = 2 up to n do:

If xi−1 ≥ xi then M[i] := 1
Else M[i] := 1 + M[i − 1]

I Return max{M[1],M[2],M[3], . . . ,M[n]}

Note: to find the actual longest increasing substring, you have to
do backtracing.

DP Algorithm for Longest Increasing Subsequence

Input: X = x1, x2, . . . , xn

Suppose we want to find the length of the longest increasing
subsequence (rather than substring).

Recall M[i] was the length of the longest increasing substring that
ends at xi .

Let’s let Q[i] denote the length of the longest increasing
subsequence that ends at xi .

Recall the difference between substrings and subsequences!

DP Algorithm for the Longest Increasing Subsequence

Let Q[i] denote the length of the longest increasing subsequence
that ends at xi .

Then Q[1] = 1

Let Pred [i] denote the set of indices j where:

I 1 ≤ j < i

I xj < xi

Then

I Q[i] = 1 if Pred [i] = ∅ and

I Q[i] = max{Q[j] + 1|j ∈ Pred [i]} else

For X = 1, 3, 4, 1, 2, 8:

I Pred [1] = ∅
I Pred [2] = {1}
I Pred [3] = {1, 2}

Class exercise: computing remaining entries of Pred array.

DP Algorithm for the Longest Increasing Subsequence

Input: array X = [x1, x2, . . . , xn]

Output: length of longest increasing subsequence

I Q[1] := 1
I For i = 2 up to n:

I IF Pred [i] = ∅ THEN Q[i] := 1
I ELSE Q[i] := max{Q[j] + 1|j ∈ Pred [i]}

I Return max{Q[1],Q[2],Q[3], . . . ,Q[n]}

Note: to find the actual longest increasing substequence, you have
to do backtracing.

Designing DP algorithm

Most important thing is to come up with the right subproblem
formulation!

All Pairs Shortest Path
The input is an undirected graph G = (V ,E) with positive edge
weights on the edges.

Given a path P between two vertices vi and vj , the cost (or
length) of P is the sum of the weights on the edges in the path.
We write this as Cost(P).

A shortest path between two vertices is one with minimum cost.

We want to find the length of the shortest path between every pair
of vertices, and store this in an n × n matrix (where n = |V |).

All Pairs Shortest Path

I Input: graph G = (V ,E), V = {v1, v2, . . . , vn}, and edge
weights given by w : E → R+. (Hence w(e) is the weight of
edge e.)

I Output: D, an n × n matrix, so that D[i , j] is the length of
the shortest path from vi to vj . Note we set D[i , i] = 0 for all
i = 1, 2, . . . , n.

Floyd-Warshall Algorithm

We present the Floyd-Warshall algorithm to solve All Pairs
Shortest Path, beginning with the definition of its subproblems.

MAX(P): For i 6= j , and given a path P from vi to vj , we look at
the internal nodes of the path (i.e., everything except the
endpoints), and let MAX (P) denote the maximum index of any
internal node.

If the path is a single edge, then MAX (P) = 0.
Thus

I For P = v3, v1, v2, v5, v7, MAX (P) = 5.

I For P = v5, v1, v2, v7, MAX (P) = 2.

I For P = v1, v2, MAX (P) = 0 (no internal nodes).

Floyd-Warshall Algorithm

The input to Floyd Warshall is a graph G = (V ,E) with
non-negative weights on its edges, denoted by w(vi , vj), where
(vi , vj) ∈ E .
Floyd-Warshall computes subproblems M[i,j,k]:

I M[i , j , k] is the length of the shortest path P from vi to vj
such that MAX (P) ≤ k .

I If i = j , we set M[i , j , k] = 0.

I If i 6= j and there is no path between vi and vj satisfying
MAX (P) ≤ k , then we set M[i , j , k] =∞.

I We let k = 0, 1, 2, . . . , n, and 1 ≤ i , j ≤ n.

Questions:

I What does M[1, 2, 0] mean?

I What does M[1, 2, 2] mean?

I What does M[1, 2, 3] mean?

I What does M[1, 2, 5] mean?

Floyd-Warshall Algorithm
Remember M[i , j , k] is the length of the shortest path P from vi to
vj such that MAX (P) ≤ k .
Suppose we were able to compute (correctly) all M[i , j , k], for
1 ≤ i , j ≤ n and 0 ≤ k ≤ n.

I Question: How could we compute the length of the shortest
path from vi to vj?

Floyd-Warshall Algorithm

Remember M[i , j , k] is the length of the shortest path P from vi to
vj such that MAX (P) ≤ k .
Suppose we were able to compute (correctly) all M[i , j , k], for
1 ≤ i , j ≤ n and 0 ≤ k ≤ n.

I Question: How could we compute the length of the shortest
path from vi to vj?

I Answer: it is the same as M[i , j , n].

So once we have computed all entries in the 3-dimensional matrix
M, we return the 2-dimensional matrix obtained by setting k = n.

Floyd-Warshall Algorithm, k=0
When k = 0 we are asking about the lengths of paths that have no
internal nodes.

Case: i = j: Set M[i , i , 0] = 0

Case: i 6= j: M[i , j , 0] is the length of the shortest path P from
vi to vj with MAX (P) = 0, or ∞ if no such path exists.

If the path P exists, it is a single edge e, and its weight is w(e).

Hence, M[i , j , 0] = w(vi , vj) if (vi , vj) ∈ E , and otherwise
M[i , j , 0] =∞.

Floyd-Warshall Algorithm
After we compute all entries of the matrix M with k = 0, can we
compute the entries with k = 1?

If i = j , we set M[i , j , 1] = 0.

For i 6= j , consider a shortest path P from vi to vj with
MAX (P) ≤ 1. What does it look like?

Floyd-Warshall Algorithm

Consider a shortest path P from vi to vj with MAX (P) ≤ 1.
Cases:

I P is a single edge e, and so Cost(P) = w(e) = M[i , j , 0].

I P has an internal vertex, which must be v1.
Hence P has two edges, (vi , v1) and (v1, vj).
Then Cost(P) = w(vi , v1) + w(v1, vj).
Note that w(vi , v1) = M[i , 1, 0] and w(v1, vj) = M[1, j , 0].

Hence M[i , j , 1] = min{M[i , j , 0],M[i , 1, 0] + M[1, j , 0]}.

Floyd-Warshall Algorithm

After we compute all entries of the matrix M with
k = 0, 1, . . . ,K − 1, can we compute the entries with k = K?

Consider a shortest path P from vi to vj with MAX (P) ≤ K .
Cases:

I P satisfies MAX (P) ≤ K − 1. Then Cost(P) = M[i , j ,K − 1].

I P satisfies MAX (P) = K .
Hence vK ∈ P. Analyzing this is a bit more complicated, but
we will show the path P satisfies
Cost(P) = M[i ,K ,K − 1] + M[K , j ,K − 1].

Floyd-Warshall Algorithm

Consider a shortest path P from vi to vj with MAX (P) = K .
Hence vK ∈ P.
Write P as the concatenation of two paths, P1 from vi to vK and
P2 from vK to vj .
Do you agree that Cost(P) = Cost(P1) + Cost(P2)?
Questions:

I What is MAX (P1)?

I What is MAX (P2)?

Floyd-Warshall Algorithm

P is a shortest path P from vi to vj with MAX (P) = K .
We write P as the concatenation of P1 from vi to vK and P2 from
vK to vj .
Note that MAX (P1) ≤ K − 1 and MAX (P2) ≤ K − 1.
Hence,

I Cost(P1) = M[i ,K ,K − 1]

I Cost(P2) = M[K , j ,K − 1]

I Cost(P) = M[i ,K ,K − 1] + M[K , j ,K − 1].

Floyd-Warshall Algorithm
M[i , j ,K] = min{M[i , j ,K − 1],M[i ,K ,K − 1] + M[K , j ,K − 1]}

Floyd-Warshall Algorithm

Algorithm:

I %Set base cases:

I M[i , i , 0] := 0

I For i 6= j , if (vi , vj) ∈ E then M[i , j , 0] := w(vi , vj), else
M[i , j , 0] :=∞

I For k = 1 up to n DO:
I For all i = 1, 2, . . . , n, M[i , i , k] := 0
I For all pairs i , j with i 6= j ,

M[i , j , k] := min{M[i , j ,K−1],M[i ,K ,K−1]+M[K , j ,K−1]}
Easy to see this is O(n3) (in fact, Θ(n3)).

Floyd-Warshall Algorithm

I As presented, this algorithm only returns the length (i.e., cost)
of the shortest path between every pair of nodes. It does not
return the path itself, or directly help you find the path. The
assigned reading shows you how to can store information to
help you reconstruct the shortest path.

I This algorithm, as described, was only for undirected graph
with positive edge weights. It’s a trivial modification to deal
with directed graphs or with weights that can be negative. (It
just gets strange to think about shortest paths when there are
negative cycles...)

Dynamic Programming Algorithms

When you are asked to create a DP algorithm, remember to:

I Define what your variables mean

I Show the base cases and how you’ll compute them

I Show how you’ll compute the other variables, using previously
computed variables (this is the “recursive definition”)

I State the order in which you compute the variables
(remember - bottom-up)

I Show where your “answer” will be (or how you’ll compute
your answer from your variables)

I Explain why your algorithm is correct

I Analyze the running time

