TIPP tutorial

Nam-phuong Nguyen
University of California, San Diego
2016 Phylogenomics Symposium and Software School
Multiple Sequence Alignment (MSA)

Hu = AGGCTATCACCAGACTCCA
Ch = TAGCTATCAGACCAGC
Go = TAGCTGACCGC
Or = TCACGACCGACA

Hu = -AGGCTATCAGCAGACTCCA
Ch = TAG-CTATCAGACCAGC--
Go = TAG-CT-----GACCAGC--
Or = --------TCACGACCGACA
Using the MSA and tree to identify reads

Hu = AGGCTATCACGACCTCCA
Ch = TAGCTATCACGACCGC
Go = TAGCT-----GACCGC
Or = -------TCACGACCGACA
Qu = TEEEEEETCACC-CC----

Represent MSA using a profile Hidden Markov Model (HMM)
Outline

• Start a profiling job

• Inputs/outputs

• Parameter options
Before we begin....

• cd /path/to/sepp/ (on the VM, the path is ~/tools/sepp/)

• chmod u+x run_tipp_tool.py

• export PATH=$PATH:/path/to/sepp/
Running an initial profiling job

• First move to the test directory located within the sepp directory
 • On the VM type
 • cd ~/tools/sepp/test/unittest/data/mock/pyrg
 • All others
 • cd /path/to/sepp/test/unittest/data/mock/pyrg

• Run
 • run_tipp.py -R pyrg -f pyrg.even.fas -o output
Output

• Alignment files
 • output_alignment.fasta
 • output_alignment_masked.fasta

• Placement file
 • output_placement.json
Output (continued)

• Classification file

output_classification.txt

EAS25_26_1_15_381_1761_0_1,2157,Archaia,superkingdom,1.0000
EAS25_26_1_15_381_1761_0_1,1,root,root,1.0000
EAS25_26_1_15_381_1761_0_1,183925,Methanobacteria,class,1.0000
EAS25_26_1_15_381_1761_0_1,2172,Methanobrevibacter,genus,1.0000
EAS25_26_1_15_381_1761_0_1,28890,Euryarchaeota,phylum,1.0000
EAS25_26_1_15_381_1761_0_1,2158,Methanobacteriales,order,1.0000
EAS25_26_1_15_381_1761_0_1,2173,Methanobrevibacter smithii,species,1.0000
Converting classification format

• Type:
 • mkdir profile

• run_tipp_tool.py -g pyrg -a profile -o profile -p pyrg -i output_classification.txt -t 0.95
Tab separated classification file

<table>
<thead>
<tr>
<th>fragment</th>
<th>species</th>
<th>genus</th>
<th>family</th>
<th>order</th>
<th>class</th>
<th>phylum</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAS25...</td>
<td>2173</td>
<td>2172</td>
<td>2159</td>
<td>2158</td>
<td>183925</td>
<td>28890</td>
</tr>
<tr>
<td>EAS25...</td>
<td>NA</td>
<td>NA</td>
<td>2159</td>
<td>2158</td>
<td>183925</td>
<td>28890</td>
</tr>
</tbody>
</table>
Abundance profile

abundance.species.csv

taxa abundance
Methanobrevibacter smithii 0.7969
Methanococcus maripaludis 0.0156
unclassified 0.1875
Profiling a metagenomic dataset

• Change to the mixed test directory
 • cd ../mixed

• Run the abundance profiler
 • run_abundance.py -f facs_simhc.short.fas -c ~/.sepp/tipp.config -d out
Phylogenetic Placement

• Align each query sequence to backbone alignment:
 • HMMALIGN (Eddy, Bioinformatics 1998)
 • PaPaRa (Berger and Stamatakis, Bioinformatics 2011)

• Place each query sequence into backbone tree, using extended alignment:
 • pplacer (Matsen et al., BMC Bioinformatics 2010)
 • EPA (Berger et al., Systematic Biology 2011)
Phylogenetic Placement

• Align each query sequence to backbone alignment:
 • HMMALIGN (Eddy, Bioinformatics 1998)
 • PaPaRa (Berger and Stamatakis, Bioinformatics 2011)

• Place each query sequence into backbone tree, using extended alignment:
 • pplacer (Matsen et al., BMC Bioinformatics 2010)
 • EPA (Berger et al., Systematic Biology 2011)
HMMER and PaPaRa results

Model Condition

Increasing rate evolution

Backbone size: 500
5000 fragments
20 replicates
Standard approach (single HMM)
New approach
Ensemble of HHMs (eHMMs)
SEPP (10% rule) Simulated Results

- backbone size: 500
- 5000 fragments
- 20 replicates

Increasing rate evolution

Bar chart showing the delta-error (edges) for different model conditions (M4, M3, M2) with three different algorithms: HMMER + pplacer, PaPaRa + pplacer, and SEPP 50/50.
Using SEPP

Fragmentary Unknown Reads:
(60-200 bp long)

- ACCG
- CGAG
- CGG
- GGCT
- TAGA
- GGGGG
- TCGAG
- GGCG
- GGG
- ACCT

Known Full length Sequences, and an alignment and a tree
(500-10,000 bp long)

- ML placement 40%

Known Sequences:
- AGG...GCAT (species1)
- TAGC...CCA (species2)
- TAGA...CTT (species3)
- AGC...ACA (species4)
- ACT..TAGA..A (species5)
Adding Uncertainty

Fragmentary Unknown Reads:
(60-200 bp long)
- ACCG
- CGAG
- CGG
- GGCT
- TAGA
- GGGGG
- TCGAG
- GGCG
- GGG
- .
- .
- .
- ACCT

Known Full length Sequences, and an alignment and a tree
(500-10,000 bp long)

ML placement 40%
2nd highest likelihood placement 38%

AGG...GCAT (species1)
TAGC...CCA (species2)
TAGA...CTT (species3)
AGC...ACA (species4)
ACT..TAGA..A (species5)
Adding Uncertainty

Fragmentary Unknown Reads: (60-200 bp long)
- ACCG
- CGAG
- CGG
- GGCT
- TAGA
- GGGGG
- TCGAG
- GGC
- GGG
- ACCT

Known Full length Sequences, and an alignment and a tree (500-10,000 bp long)
- ML placement: 40%
- 2nd highest likelihood placement: 38%

- TAGC...CCA (species2)
- TAGA...CTT (species3)
- AGC...ACA (species4)
- ACT..TAGA..A (species5)
TIPP: Taxonomic Identification And Phylogenetic Profiling

- Nguyen et al., Bioinformatics, 2014
Reference package

- Alignment (sate.fasta)
- Refined taxonomic tree (sate.taxonomy)
- Rate parameters (sate.taxonomy.RAxML_info)
- Taxonomy file (all_taxon.taxonomy)
- Sequence mapping (species.mapping)
Looking at results

• Pooled abundance profiles

• Results for each individual marker
16S amplicon analysis

- Change to the 16S_bacteria test directory
 - cd ..:/16S_bacteria

- Run TIPP on the gut data
 - run_tipp.py -R 16S_bacteria -f human_gut_16S.fas -o 16s -A 1000 -P 1000