The Accuracy of Fast Phylogenetic Methods for Large Datasets (PSB), 2002

Reviewed by Kajori Banerjee
Motivation

• Compares 4 methods
 1) Neighbor-joining
 2) Neighbor
 3) Greedy parsimony and
 4) DCM-NJ+MP

Parameters for comparison:
 1) Model of evolution - Jukes-Cantor and Kimura2-Parameter+Gamma
 2) Tree diameter
 3) Sequence length requirement
 4) Taxon sampling
Dataset Generation

1) Generate Model tree : model true tree using Random birth-death process

2) Make model trees non-ultrametric - the edges are multiplied with a random number from the interval $[1/c, c]$ is

3) Evolve sequences : Jukes-Cantor or Kimura2-Parameter+Gamma model.
Results

Figure 5: Accuracy as a function of the diameter under the K2P+Gamma model for fixed sequence length (500) and two numbers of taxa
Conclusion

1) **Sequence length**:
 - Weighbor - better performance for small sequence lengths
 - DCM-NJ+MP - more appropriate for data with longer sequences.
 - NJ require sequences length to be exponential with respect to the evolutionary diameter of the true tree.

2) **Speed**:
 - Both Neighbor-joining and greedy parsimony are generally faster than Weighbor and DCMNJ+MP.
 - Greedy Parsimony is very fast but low topological accuracy.

3) **Tree diameter**:
 DCM-NJ+MP has better topological accuracy then NJ as the evolutionary distance between the taxa in the dataset increases.

4) **Model of evolution**

5) **Taxon sampling**
 - DCM-NJ+MP has better topological accuracy then NJ with respect to as the number of taxa in the dataset increases.
Comments

• Have not considered boot-strapping.

• Model tree used in these experiments are free from horizontal gene transfer
References

