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Abstract

With the increased availability of sequence data and even of fully sequenced and assembled genomes, phy-
logeny estimation of very large trees (even of hundreds of thousands of sequences) is now a goal for some
biologists. Yet, the construction of these phylogenies is a complex pipeline presenting analytical and computa-
tional challenges, especially when the number of sequences is very large. In the last few years, new methods
have been developed that aim to enable highly accurate phylogeny estimations on these large datasets, includ-
ing divide-and-conquer techniques for multiple sequence alignment and/or tree estimation, methods that can
estimate species trees from multi-locus datasets while addressing heterogeneity due to biological processes (e.g.,
incomplete lineage sorting and gene duplication and loss), and methods to add sequences into large gene trees or
species trees. Here we present some of these recent advances and discuss opportunities for future improvements.

1 Introduction

Large-scale phylogeny estimation presents substantial computational and statistical challenges: the most accurate
methods are often likelihood-based methods (Maximum Likelihood or Bayesian Inference) that can use substantial
time and memory to produce reliable trees. Multiple sequence alignment (a precursor to phylogeny estimation)
is also challenging, especially on large datasets that have high rates of evolution. Furthermore, species tree esti-
mation presents additional challenges due to heterogeneity in phylogenetic trees between different loci, which can
result from processes such as incomplete lineage sorting (ILS), gene duplication and loss (GDL), and horizontal
gene transfer (HGT) (Maddison, 1997). Yet because dense taxonomic sampling has been seen to improve phyloge-
netic accuracy Nabhan and Sarkar (2012), the interest in statistically rigorous methods for large-scale phylogeny
estimation (whether of gene trees or species trees) has not abated.

The last decade has produced methods for alignment and phylogeny estimation that have excellent accuracy on
small to moderate-sized datasets, but only a few of these methods can analyze even moderately large datasets (1,000
sequences). Some of the methods with the best scalability are distance-based (e.g., FastME (Lefort et al., 2015)).
However, studies (e.g., Lees et al. (2018)) comparing methods based on maximum likelihood to distance-based
approaches have observed that maximum likelihood methods tend to be more accurate on large datasets.

Because maximum likelihood methods can be computationally intensive (both for time and memory), substantial
effort has been made to improve the running time through careful implementation of the numerical calculations
and use of parallelism (see recent surveys in Bader and Madduri (2019); Guindon and Gascuel (2019); Stamatakis
(2019)). Despite the advances in the last decade, the construction of very large maximum likelihood phylogenies
(e.g., microbial phylogenies of 100,000 or more sequences or 10,000 whole genomes) is very difficult using standard
approaches, except perhaps when supercomputers are available.

In this paper we present a variety of techniques that use divide-and-conquer in order to scale computationally
intensive but highly accurate methods to large and even ultra-large datasets. An example where divide-and-conquer
is used for maximum likelihood tree estimation is provided in Park et al. (2021): the input sequence dataset is
divided into disjoint subsets, maximum likelihood trees are estimated on the subsets, and then these subset trees
are merged together. By design, the recent divide-and-conquer methods have fast techniques for the initial stage
(dividing into subsets) and the final stage (merging disjoint trees), so that this approach has both high accuracy,
low computational effort, and excellent scalability to large datasets.
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This study presents advances in four main topics: divide-and-conquer methods for large-scale multiple sequence
alignment (a precursor to phylogeny estimation), maximum likelihood tree estimation, species tree estimation
without requiring orthology detection, and phylogenetic placement methods (e.g., adding new sequences or species
to a given phylogeny) that can be used to update a large phylogeny or taxonomically characterize new sequences.
Thus, while this survey is specifically relevant to microbial phylogenetics and biodiversity assessment, all large-
scale systematics research presents similar challenges. These techniques reduce the computational effort compared
to traditional methods, and so reduce the need for supercomputers or high-performance computing environments
while providing very high accuracy.

Due to space constraints, this survey is perforce limited, and some promising approaches will be omitted or not
covered in adequate depth.

2 Recent Advances in Multiple Sequence Alignment

Multiple sequence alignment is a precursor to phylogeny estimation as well as to other bioinformatics problems,
such as sequence classification and protein function prediction. There are many well established methods (surveyed
in Katoh (2021)), but only some of these provide good accuracy on large sequence datasets, especially when they
have evolved under high rates of evolution. Divide-and-conquer techniques have been very powerful tools in scaling
the most alignment accurate methods to large datasets. These methods (e.g., Smith et al. (2009); Liu et al. (2009);
Mirarab et al. (2015); Smirnov and Warnow (2021); Smirnov (2021)) divide the input sequence dataset into disjoint
subsets, produce alignments on each subset using a selected “base method” and then merge the subset alignments
together. Two of these methods, PASTA (Mirarab et al., 2015) and recursive MAGUS (Smirnov, 2021), can be used
to produce highly accurate alignments of datasets with up to 1,000,000 sequences. When combined with iteration
(so that each iteration uses the previous iteration’s alignment to compute a new tree and then decomposes the
dataset using the tree), the methods can produce highly accurate alignments and trees, typically in just a few
iterations. MAFFT (Katoh and Standley, 2013) is the default method for subset alignment for many of these
pipelines, but these pipelines have been studied with other methods and found that they improved accuracy and/or
reduced running time when analyzing large datasets. For example, using BAli-Phy (Redelings and Suchard, 2005)
(a Bayesian method for co-estimation of alignments and trees) within PASTA has been able to produce highly
accurate alignments on datasets with 1,000 sequences (Nute and Warnow, 2016).

The most accurate of these divide-and-conquer strategies is MAGUS, which substantially improves on the
previous most accurate method (PASTA) through the use of a new technique, the Graph Clustering Merger, for
merging a set of disjoint alignments; all other algorithmic differences between MAGUS and PASTA are very minor.
As demonstrated in Zaharias et al. (2021), the Graph Clustering Merger is an effective strategy for solving the
Maximum Weight Trace problem (Kececioglu, 1993) in the context of merging alignments. The recursive version
of MAGUS (Smirnov, 2021) is able to align very large datasets with high accuracy (up to 1,000,000 sequences so
far). As shown in Smirnov (2021), MAGUS and its recursive version are more accurate than leading alignment
methods on large biological benchmark datasets and simulated datasets (up to 1,000,000 sequences). Figure 1
from Smirnov (2021) demonstrates how three variants of MAGUS produce more accurate alignments than leading
alignment methods on the HomFam benchmark, with up to 98,681 sequences.

3 Recent Advances in Maximum Likelihood Tree Estimation

Maximum likelihood gene tree estimation is one of the core problems in phylogeny estimation. Finding the optimal
maximum likelihood tree is NP-hard (Roch, 2006) and so the best heuristics, such as RAxML (Stamatakis, 2014)
and IQ-TREE (Nguyen et al., 2015), use many different strategies to search for the tree optimizing the likelihood
score. FastTree 2 (Price et al., 2010) is a very fast heuristic that does not make a very substantial attempt to
optimize likelihood (and hence does not find very good maximum likelihood scores), but can be comparable to
RAxML with respect to topological accuracy (Liu et al., 2011).

RAxML has been modified over the years to improve scalability to large datasets, and the current version,
RAxML-ng (Kozlov et al., 2019), is able to analyze very large datasets. However, Park et al. (2021) showed that
RAxML-ng, using 16 CPUs, did not converge on a 10,000-sequence dataset even after a week. In contrast, Price
et al. (2010) showed that FastTree 2 was able to estimate an ML tree with 237,882 distinct sequences in 22 hours.
Smirnov (2021) benchmarked FastTree 2 on a million-sequence dataset, and showed that FastTree 2 produced a
tree in about 5 days using 32 CPUs.
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Figure 1: Average alignment error on HomFam datasets with up to 93,681 sequences. Alignment error
rate SPFN is the fraction of the reference pairwise homologies missing in the estimated alignment and SPFP is the
fraction of the inferred pairwise homologies that are not in the reference alignment. Results are averaged over the
datasets where all methods completed (Muscle segfaulted on two). Error bars show standard error. (Figure taken
from Smirnov (2021).)

Figure 2: DTM Pipeline for constructing a tree from an input sequence alignment using maximum
likelihood. (1) A starting tree is computed (e.g., using FastTree 2 or IQ-TREE 2). (2) Edges are deleted from the
starting tree to produce small subsets. (3) Trees are estimated on the subsets using a selected maximum likelihood
method (e.g., IQ-TREE 2 or RAxML-ng). (4) The selected DTM method merges the disjoint trees into a tree on
the full dataset. DTM pipelines that operate from multi-locus inputs and compute species trees have also been
developed, with suitable adjustments to the algorithmic steps. Figure from Park et al. (2021)

Although FastTree 2 clearly dominates RAxML for speed and memory usage and can be comparable in topo-
logical accuracy, recent research has shown that FastTree 2 can have reduced topological accuracy when the input
alignment contains many fragmentary sequences (Park et al., 2021) or is otherwise very gappy (Sayyari et al., 2017)
and when the sequences have evolved under heterotachy (Park et al., 2021); in contrast, RAxML seems more robust
to those conditions (see Figure 3).
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Figure 3: We compare standard maximum likelihood methods (RAxML-ng, IQ-TREE 2, and FastTree 2) to a
divide-and-conquer pipeline using the Guide Tree Merger (GTM) on four simulated datasets with 1,000 to 50,000
sequences. 1000M1-HF is a model condition with 1,000 sequences that includes fragmentary sequences, Cox-HET
is a model condition with 2341 sequences with heterotachy, RNASim model conditions evolve under selection and
have 10,000 or 50,000 sequences. Top: running time (hrs), bottom: missing branch (FN) error rates across 10
replicates per model condition. Results not shown for IQ-TREE 2 and RAxML on the RNASim 50K dataset are
because IQ-TREE 2 failed to return a tree within the allowed time (24 hrs for the two smaller datasets and 168 hrs
for the two larger datasets) and RAxML produced a tree with 100% topological error. Figure adapted from Park
et al. (2021)

Several strategies have been developed to overcome the burden of computationally intensive maximum likelihood
analyses. One such approach uses taxonomic information about the input sequences to constrain the search space;
these approaches are discussed in the species tree section as they are not as relevant to gene tree estimation
due to the potential discordance between gene trees and species trees. Other divide-and-conquer techniques have
been developed that do not use external taxonomic information. Some of these (e.g., DACTAL (Nelesen et al.,
2012)) operate by dividing the input set into overlapping subsets, constructing trees on the subsets, and then
using supertree methods to merge the subset trees into a tree on the full dataset. This is a natural approaches to
large-scale tree estimation (Bininda-Emonds, 2004), but the requirement to use supertree methods (which are not
yet very fast) constrains the scalability of these approaches (Warnow, 2019).

To overcome this limitation, a new type of divide-and-conquer approach has been developed that divides the
input dataset into disjoint rather than overlapping sets, estimates trees on these subsets, and then merges the trees
together using information obtained in the input. This approach, referred to as “Disjoint Tree Mergers” (DTMs)
(see Figure 2), can be used to estimate both gene trees (in which case the subset trees are computed using maximum
likelihood) and species trees from multi-locus datasets, and are statistically consistent for both types of analyses.

Figure 3 shows results from Park et al. (2021), comparing a DTM pipeline (using the Guide Tree Merger
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(Smirnov and Warnow, 2020)) to two leading maximum likelihood methods (RAxML-ng and IQ-TREE 2). The
GTM pipeline matches or improves on the topological accuracy compared to IQ-TREE 2 and FastTree 2 and is
competitive with RAxML-ng, while being much faster than RAxML-ng. A comparison on the largest dataset with
50,000 sequences, limited to 168 hours (1 week) of analysis, shows that only the GTM pipeline and FastTree 2 are
acceptable: RAxML-ng has 100% error on that model condition and the IQ-TREE 2 analysis fails to return a tree.

4 Recent Advances in Species Tree Estimation

A traditional approach to multi-locus species tree estimation concatenates the individual gene sequence alignments
into a “supermatrix” and estimates a tree on the supermatrix, often using maximum likelihood. These “concatena-
tion analyses” are appealing but can be very computationally expensive: the maximum likelihood analysis of the
48 bird genomes in Jarvis et al. (2014) took 250 CPU years, and the maximum likelihood concatenation pipeline of
Zhu et al. (2019) took ∼33,000 CPU hours (about 3.8 CPU years) to build a tree on 10,575 genomes. In addition,
because different genomic regions can have different evolutionary histories due to processes such as incomplete
lineage sorting (ILS) and gene duplication and loss (GDL), the use of concatenation (which assumes that all the
sites evolve down a single tree topology) has been significantly criticized (Jiang et al., 2020). As a result, new
approaches based on statistical models for gene evolution within species trees have been developed and are now
increasingly used, and some of these approaches are very scalable. Here we present recent advances for species tree
estimation that provide high accuracy and scalability.

4.1 Species tree estimation in the presence of ILS

The problem of species tree estimation in the presence of ILS is very well studied. Although species trees have
traditionally been estimated using maximum likelihood and other methods on a concatenation of the individual
gene sequence alignments, this approach has been shown to be statistically inconsistent when there is gene tree
heterogeneity due to incomplete lineage sorting (Roch and Steel, 2015).

One of the statistically consistent approaches for species tree estimation when ILS is present operates by
estimating gene trees for each gene and then combining the gene trees. These “summary methods” are generally
faster than concatenation (especially on large datasets). Two of the best known methods are MP-EST (Liu et al.,
2010) and ASTRAL (Mirarab et al., 2014), but ASTRAL is generally faster on large datasets. ASTRID (Vachaspati
and Warnow, 2015) is another fast and scalable summary method that is often comparable in accuracy to ASTRAL,
but ASTRAL is more frequently used than ASTRID.

ASTRAL constructs an unrooted species tree from a set of unrooted gene trees by solving the “Maximum
Quartet Support Supertree” problem (i.e., finding a species tree that agrees with as many quartet trees induced
by the input gene trees as possible). Since this is an NP-hard problem, the default setting for ASTRAL solves
the problem within a constrained search space that is computed from the input gene trees. Specifically, ASTRAL
only considers those candidate species trees that draw their bipartitions from a constraint set that contains the
input gene tree bipartitions and potentially some additional bipartitions. ASTRAL uses dynamic programming to
solve this constrained search problem exactly, which allows it to be polynomial time on every input. Although it
is polynomial time, the worst-case runtime is nearly quadratic in the number of distinct bipartitions found in the
constraint set. Since this constraint set can be quite large when there is substantial heterogeneity between gene
trees and large numbers of genes, ASTRAL can sometimes take a long time to complete (i.e., days).

In addition to parallelism, two high-level techniques have been developed to improve ASTRAL’s speed. The
first is the use of Disjoint Tree Merger pipelines, which greatly reduce the running time for ASTRAL on large
taxon sets (Molloy and Warnow, 2019; Smirnov and Warnow, 2020). The third technique operates by replacing
the constraint set that ASTRAL computes from the input with a smaller constraint set. One such approach uses
“external constraints”, for example partial information about the species tree, in order to reduce the constraint
set size (Rabiee and Mirarab, 2020a). Another approach runs ASTRID on a collection of subsamples of the gene
trees, so that each ASTRID analysis of each subsample produces a candidate species tree. The bipartitions from
those estimated trees are then used as the constraint set for ASTRAL. This approach, which is called “FASTRAL”
(Dibaeinia et al., 2021), is provably statistically consistent under the multi-species coalescent model, and much faster
than ASTRAL. Interestingly, it is also competitive with ASTRAL for accuracy – and sometimes more accurate!
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Figure 4: Species tree error (Robinson-Foulds error rates), wall clock running time (s), and peak memory usage of
ASTRAL-Pro, SpeciesRax, and ASTRID-DISCO on a simulated set (under GDL and ILS) of 1001 species and 50
estimated gene trees. (Figure taken from Willson et al. (2021).)

4.2 Species tree estimation in the presence of GDL

Genes can evolve with duplication and loss (GDL), in which case a given organism can have multiple copies of a
given gene. As a consequence, the phylogeny for that gene (called a “gene family tree”) can have multiple copies
of one or more species, and so is called a “MUL-tree” to distinguish it from a single-copy tree.

When estimating a species tree, it is common practice to eliminate those genes that have multiple copies of
species (and so evolve with GDL) and restrict instead to those genes that are single copy. This practice reduces
available data, and so raises the concern that accuracy could be reduced. Alternatively, methods to detect orthology
are used, so that the multi-copy family can be reduced to single-copy genes. However, orthology detection is still
not reliably solved well (Glover et al., 2019), and so this approach also has some problems. Finally, methods that
can construct species trees from MUL-trees can be used.

A recent theoretical advance is the proof that modifications of ASTRAL to deal with multi-copy gene family trees
are statistically consistent under statistical models of GDL evolution (Legried et al., 2021; Markin and Eulenstein,
2021). However, these statistically consistent methods are not as accurate as ASTRAL-Pro (Zhang et al., 2020b),
a variant of ASTRAL recently developed specifically to address GDL. Other methods that can estimate species
trees from a set of MUL-trees have been developed, with gene tree parsimony the most well known (e.g., DupTree
(Wehe et al., 2008)), but also including MixTrEm-DLRS (Ullah et al., 2015), MulRF (Chaudhary et al., 2015),
FastMulRFS (Molloy and Warnow, 2020), SpeciesRax (Morel et al., 2021). However, of these methods have been
shown to be as accurate as ASTRAL-Pro.

Tree-decomposition represents an alternative approach to methods like ASTRAL-Pro that combine MUL-trees
to estimate the species tree. In a tree-decomposition approach, each gene family tree is decomposed into a set
of single-copy trees, and then the resultant set of single-copy trees is given to a selected species tree estimation
method, such as ASTRAL or ASTRID. There are several such tree-decomposition methods, with DISCO (Willson
et al., 2021) a recent and promising technique. As seen in Figure 4, using DISCO with ASTRID on a dataset with
1,000 species produces a tree that is more accurate than ASTRAL-Pro and SpeciesRax, while being much faster
and having lower memory requirements than both methods.

4.3 General techniques to reduce runtime

Taxonomic information can be used to constrain the search space, and hence improve running time. For example,
the different species in the input could be organized into clades that are consistent with an external taxonomy and
trees on these clades could be estimated and then rooted through inclusion of outgroups. By design, this approach
produces a rooted tree that is compatible with the selected taxonomy. PyPHLAWD (Smith and Walker, 2019)
and PhyLoTA (Sanderson et al., 2008) are examples of pipelines using such strategies, and this type of approach
has been used in several phylogenomic analyses (e.g., Asnicar et al. (2020); Janssens et al. (2020)). However, if
the taxonomy has errors or if the sequences in the input are incorrectly taxonomically labeled, accuracy can be
reduced; hence, these techniques are often combined with opportunities for the user to correct potential mistakes. In
addition, rooting subset trees using outgroups can be unreliable (Tian and Kubatko, 2017). This type of approach
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is therefore useful but presents challenges.
Disjoint Tree Merger (DTM) pipelines have been used with ASTRAL and RAxML concatenation analysis

for multi-locus species tree estimation, where they have reduced computational effort and maintained or improved
topological accuracy (Molloy and Warnow, 2019; Smirnov and Warnow, 2020). DTM pipelines do not use taxonomic
information, which provides both advantages and disadvantages compared to the methods that use taxonomic
information.

5 Recent Advances in Updating Large Trees

Once a large tree is estimated, if new sequence data become available, then starting all over is undesirable (especially
since the first tree may have already required a great deal of computational effort and time). Hence, the problem of
updating a tree by adding newly found sequences into the tree becomes relevant. We consider this in two contexts:
adding leaves to gene trees and to species trees.

The methods described in this section are also relevant to understanding microbial diversity: given a sequence,
placing it into a taxonomy makes it possible to taxonomically characterize the sequence, and so also enables an
assessment of microbial diversity in a population (Nguyen et al., 2014; Segata et al., 2013; Czech et al., 2020; Shah
et al., 2021). This approach is particularly relevant for characterizing novel sequences (i.e., sequences that are not
in public databases) and the accuracy of the taxonomic assignment improves on larger trees (Shah et al., 2021).
Therefore, methods for placing sequences into large trees also have utility for assessment of microbial diversity.

5.1 Adding sequences to gene trees

One of the earliest methods for phylogenetic placement is pplacer (Matsen et al., 2010), which assumed that the
input is a binary tree with sequences at the leaves in an alignment, and a set of query sequences that need to
be added into the tree. The approach used in pplacer is likelihood-based, with maximum likelihood or Bayesian
options both available; here we describe the maximum likelihood version. For a given query sequence q, pplacer
would find the best location in the tree to add q (i.e., the best edge in the tree to subdivide and then make q a leaf
adjacent to the new node) in order to optimize the maximum likelihood score. Because pplacer is likelihood-based,
this approach can be computationally intensive (Balaban et al., 2020).

Other phylogenetic placement methods have been developed that seek to improve scalability to larger trees
or reduce running time (e.g., UShER (Turakhia et al., 2021), EPA-ng (Barbera et al., 2019), APPLES (Balaban
et al., 2020), and APPLES-2 (Balaban et al., 2021)). EPA-ng is likelihood-based and has been optimized for “batch
processing” of query sequences (so that the cost of performing phylogenetic placement of a large number of query
sequences is much less than the cost of placing them one-by-one). EPA-ng has slightly reduced accuracy compared
to pplacer. APPLES is a very fast distance-based method; recent studies (Balaban et al., 2020, 2021; Wedell
et al., 2021) showed that APPLES can run on trees with 200,000 leaves and is much faster than both pplacer and
EPA-ng. APPLES-2 is an improvement on APPLES with respect to accuracy and running time, and also scales to
at least 200,000 sequences. However, even APPLES-2 does not match the accuracy of pplacer. Finally, UShER is
parsimony-based and very fast, but has not been compared to pplacer, APPLES, or APPLES-2.

Figure 5: Phylogenetic placement of fragmentary sequences into large backbone trees. Results shown are averaged
across 1,000 queries on the 50,000- and 100,000-taxon backbone trees and 200 queries on the 200,000-taxon backbone
trees. Left: placement delta error. Central: running time. Right: peak memory usage. EPA-ng-XR and pplacer-XR
both use the XR framework and have the best accuracy.
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Recently, two divide-and-conquer methods, pplacer-XR (pplacer-eXtended Range) (Wedell et al., 2021) and
pplacer-DC(pplacer-Divide-and-Conquer) (Koning et al., 2021), were developed in order to improve accuracy for
phylogenetic placement when inserting into trees that are too large for pplacer. Here we describe the pplacer-XR
approach, as it is faster, uses less memory, and is more accurate than pplacerDC; in addition, it has also been able
to scale to trees with 200,000 leaves whereas pplacer-DC scales only to 100,000 sequences.

The pplacer-XR pipeline uses four stages to insert a query sequence q into a tree T . First, a leaf that has the
greatest similarity to q is found (where similarity is based on percent ID). In the second stage, a contiguous subtree
t is extracted from T that includes the nearest leaf and up to N − 1 additional leaves (where N = 2000 when
the XR framework is used with pplacer). In the third stage, pplacer is used to insert the query sequence into the
subtree t (i.e., an edge e in the subtree t is identified); since N was set to be only 2,000, pplacer can complete on
this dataset. Finally, in the fourth stage, we find an edge e′ in the tree T corresponding to the edge e, and we
place the query sequence into that edge e′. By design, this four-stage approach can be modified to suit a different
phylogenetic placement method, so that methods that can run on larger trees can have larger values for N . For
example, when using the XR framework with EPA-ng, N is set to 10,000. Every stage of this pipeline, other than
the third stage (which runs pplacer), is very fast and uses little memory.

Phylogenetic placement is also useful when the input sequence dataset exhibits sequence length heterogeneity,
as tree estimation methods can have poor accuracy under such conditions (e.g., see FastTree’s poor topological
accuracy for datasets with fragmentary sequences in Sayyari et al. (2017)). Furthermore, phylogenetic placement is
useful for adding reads or just partially assembled sequences into trees, which in turn is useful for taxon identification
when the tree is a taxonomy.

Figure 5 compares pplacer-XR (i.e., pplacer used within the XR framework) and EPA-ng-XR (i.e., EPA-ng used
within the XR framework) to APPLES and APPLES-2 in placing fragmentary sequences into trees of increasing
size, from 50,000 to 200,000 sequences. These are trees that are potentially too large for pplacer or EPA-ng to run on
without substantial computational resources, but using the XR framework allows both to easily run to completion.
Delta error measures the additional topological error produced for each phylogenetic placement. This figure shows
that APPLES-2 is a substantial improvement over APPES: it has much lower delta-error than APPLES and is
also faster and uses much less memory. EPA-ng-XR and pplacer-XR, are nearly equal in accuracy to each other
and both are much more accurate than APPLES-2 and APPLES. We also see that pplacer-XR is faster and has
much lower memory requirements than EPA-ng-XR. Finally, APPLES-2 is the fastest of the four methods on trees
with 50,000 and 100,000 leaves, but pplacer-XR is only slightly slower than APPLES-2 on those datasets and is
faster (by a small amount) than APPLES-2 on the 200,000-leaf trees. Thus, APPLES-2 and pplacer-XR are the
best performing of these methods, each providing an advantage over the other in a different part of the parameter
space.

5.2 Adding species to species trees

To add a species into an existing species tree, it can help to consider heterogeneity across the genome due to
processes such as ILS. INSTRAL (Rabiee and Mirarab, 2020b) is a recent example of such a method. Given an
existing species tree T , INSTRAL will add the new species into the existing tree to optimize the quartet tree
support for the extended species tree (i.e., INSTRAL extends the theoretical approach in ASTRAL). Another new
method is DEPP (Jiang et al., 2021), which computes distances using a deep neural network (DNN) and then
runs APPLES to place the new species into the tree. By training the DNN appropriately, these distances can be
appropriate to this problem of adding species into species trees.

6 Concluding Remarks

This review has shown the significant innovations over the last few years in the development of methods that
provide high accuracy on very large datasets (even up to 1,000,000 sequences), highlighting the techniques for
scaling excellent but computationally intensive methods to large datasets.

However, due to space constraints, we did not discuss all the relevant problems for large-scale tree estimation,
including how to efficiently and accurately estimate the numeric parameters (e.g., branch lengths) or evaluate
branch support in a large tree. There is active work on these problems (e.g., see Sharma and Kumar (2021);
Lemoine et al. (2018); Guindon and Gascuel (2019)), but each of these problems is likely to remain an important
direction for research.

We also did not address Bayesian inference, which is an important class of phylogenetic methods (Chen et al.,
2014; Czech et al., 2020; Holder and Lewis, 2003). Bayesian methods, such as MrBayes (Ronquist and Huelsenbeck,
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2003), are well established in the research community and have been shown to provide highly accurate point
estimates of alignments, gene trees, and species trees; however, most Bayesian methods use MCMC (Markov Chain
Monte Carlo) and are computationally intensive on large datasets since convergence to the stationary distribution
is required for high confidence in an accurate result. Some progress has been made on improving the scalability
of these point estimations using Bayesian methods, e.g., by using divide-and-conquer to break a large dataset into
subsets or constraining the search space (e.g., Zimmermann et al. (2014); Nute and Warnow (2016); Wang et al.
(2020); Gupta et al. (2021)). However, Bayesian methods produce distributions from which point estimates can
be obtained, and these distributions have significant additional value since they enable uncertainty quantification.
Scaling Bayesian methods to large datasets so that a good estimate of the distribution can be obtained is of great
interest, but is generally not enabled through the techniques that focus on scaling the point estimates. Here we
note that Zhang et al. (2020a) has made some progress in scaling MrBayes, suggesting that additional effort in
this direction is merited. In general, fully scaling Bayesian methods requires additional techniques beyond the ones
explored in this survey.

In closing, we note that the currently available methods for large-scale analysis are already much more accurate
than earlier methods, and the development of new pipelines that integrate techniques (such as disjoint tree mergers)
for scaling strong methods to large datasets is likely to provide further improvements. Thus, we predict that new
methods will be developed that will advance the capability of biologists to estimate accurate alignments and trees
and then use these in biological discovery.
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