ASTRAL-II

Discussion and Criticism
Michael Nute
3/8/16
Summary of ASTRAL (original)

• ASTRAL-II Follows up on ASTRAL [1], which finds the species tree that maximizes the quartet-score using a constrained search.
 – **Quartet Score**: for every quartet in the species tree, for every gene tree in the data, add 1 if the topology from the species tree is the same as the one in the gene tree.
 – **Constraint**: searches *only* trees whose bipartitions appear in *at least* one gene tree.

• Pros:
 – Statistically consistent under the multi-species coalescent
 – Fast for large numbers of genes, taxa

• Cons:
 – Search space might not capture the actual species tree
ASTRAL-II Improvements

1. Improves speed with some shortcuts for counting quartet frequencies

2. Adds method for handling unresolved gene trees (polytomies)

3. Expands search space by adding bipartitions according to a heuristic using a similarity matrix:

$$[S]_{ij} = \sum_{g \in G} \sum_{q \in \binom{n}{4}} \mathbb{I}\{g \mid q = x_i x_j \}$$

- i.e. the similarity of x_i and x_j is the count of the number of quartets with them together among all gene trees.
- Adds all the bipartitions from the UPGMA tree on S.
- Adds the closure of bipartitions from the original search space (may imply some that are not already in the set).
Issues with ASTRAL-II

• Doesn’t consider how likely a bipartition is to have been missing from the search space
 – Not necessarily a drawback because the method is sensible and fast
 – Can still omit bipartitions that were likely to have been missed

• Could design a heuristic to choose bipartitions based on low-frequency quartets to find those that were probably in the species tree but never showed up in a gene tree.
Questions?

References:
