Tandy Warnow
Associate Head, Department of Computer Science Fellow of the ISCB (International Society for Computational Biology), 2017

Research Overview:
I am a computer scientist, data scientist,
and perhaps even a statistician.
I work on algorithmic problems in computational biology with the aim of developing methods that biologists will use and that will have transformative accuracy and scalability. Part of this work involves mathematics (to understand the theoretical guarantees of the methods I develop, and of other methods), but part of it is also empirical (to understand performance on data). So implementation and testing is very important. All of my methods are a combination of graph algorithms and machine learning or statistical learning. My work in machine learning in particular involves the development of novel ensemble methods, using phylogenetic estimation to guide the design of the ensemble. The machine learning I do is largely unsupervised or semisupervised learning, largely because there is very limited reliable labeled data in my field; as a result, I do not work in deep learning. Mathematical proofs are part of what I do, but my focus on empirical performance (on data, in other words) drives my research.
My current work is on
largescale and complex estimation problems in
phylogenomics (genomescale phylogeny estimation),
multiple sequence alignment,
metagenomics, and
historical linguistics.
I am a big fan of
Blue Waters, and have benefitted from several allocations.
I also very much like collaborating with biologists, and have
worked with the Avian Phylogenomics Project and the
Thousand Plant Transcriptome project, among others.
I am seeking new grad students available: I have openings in my group for graduate students (PhD or MS) to work on developing computational methods for largescale multiple sequence alignment, phylogeny estimation, metagenomics, and even historical linguistics. Strong programming skills, mathematical intuition, and interest in collaboration are necessary. If you are interested in working with me, you should take my graduate course CS 581: Algorithmic Genomic Biology which I will teach in Spring 2020.
Interested in working with me?
Postdoc positions at UIUC Computer Science. These are flexible postdocs that can be used with anyone in the CS department. If you want to teach, then these positions will be funded 50% by the department and 50% by the research faculty mentor. In exchange for departmental funding, these postdocs will teach 1 course per year, based on department needs and the candidate's interest; if the candidate wants to teach more, they will have the opportunity to do so.
Computational Phylogenetics: An introduction to designing methods for phylogeny estimation, published by Cambridge University Press (and available for purchase at Amazon and as an Ebook at Google Play). Errata are posted as I find them. The image of the Monterey Cypress is there because of the NSFfunded CIPRES project, whose purpose was to develop the methods and computational infrastructure to improve largescale phylogeny estimation. Why I wrote this book.
I dedicated the book to
my PhD advisor
Gene Lawler,
who died in 1994; see
this memorium
(published in the Journal of Computational Biology,
10 Jun 2009)
that I coauthored
with Dan Gusfield, David Shmoys, and Jan Karel Lenstra
about Gene.
Bioinformatics and Phylogenetics:
Seminal Contributions of Bernard Moret, published by
Springer.
This book is a
Festschrift for Bernard Moret,
who retired from EPFL in December 2016.
The book contains a collection of selfcontained chapters
that can be used for an advanced course in
computational biology and bioinformatics.
Current Funding:
"Plus de détails, plus de détails, disaitil à son fils, il n'y a d'originalité et de vérité que dans les détails..."  Stendhal, Lucien Leuwen (a quote much loved by my stepfather, Martin J. Klein, and an essential guide for all scholarship).
Elegant swimwear and other clothing (from Amaio)