Consistency of Topological Moves

Gillian Chu
CS 581 Nov 10, 2020
Overview

1. Introduction
2. Main Conclusions
3. SPR Sequence (RF Distance)
4. BSPPR consistency
5. Q & A
Introduction

Introduction

Balanced Minimum Evolution

- Pauplin’s Formula
 \[\hat{i}(T) = \sum_{x,y \in X} 2^{1-p_{xy}} \delta_{xy}, \]

How are BNNI/BSPR different from NNI and SPR?

- Inputs: input distance matrix \(\sigma \), phylogenetic tree \(T \)
- Output: Improved Tree \(T' \) s.t. \(\hat{i}(T) - \hat{i}(T') > 0. \)

Paper’s Goal

Input: tree metric distance matrix σ^* for tree T^*

Main Q: If we apply the BSPR (BNNI) algorithm starting with distance σ^* and initial tree T, are we guaranteed to output T^*?

Input: T Goal: T^*
Overview

1. Introduction
2. Main Conclusions
3. SPR Sequence (RF Distance)
4. BSPR consistency
5. Q&A
Main Conclusions

1. “For two distinct phylogenetic trees T and T*, there is a sequence of SPR operations that transforms T into T* and decreases the RF distance at every step.”

2. “For two distinct phylogenetic trees T and T*, there is a sequence of SPR operations that transforms T into T* and decreases the quartet distance at every step.”

3. “BSPR algorithm is consistent and has safety radius of at least $\frac{1}{3}$. “
Overview

1. Introduction
2. Main Conclusions
3. SPR Sequence (RF Distance)
4. BSPPR consistency
5. Q & A
Theorem 3.1. If T^* is a fixed tree and T is any other tree, then there is a sequence s.t.

$$d_{RF}(T_i, T^*) - d_{RF}(T_{i+1}, T^*) > 0,$$

and each arrow is a single SPR move.

Lemma 3.2 Suppose T and T^* are two trees with distinct topologies. Then there exists T' s.t.

$$d_{SPR}(T, T') = 1$$

$$d_{RF}(T^*, T') < d_{RF}(T^*, T)$$

Lemma 2.1 Suppose T and T^* have distinct topologies. Then there exist disjoint subtrees B, D in T s.t. B, D, and $B \cup D$ are subtrees of T^*, but $B \cup D$ is not a subtree of T.

SPR Sequence (RF Distance)

1. “For two distinct phylogenetic trees T and T^*, there is a sequence of SPR operations that transforms T into T^* and decreases the RF distance at every step.”
Lemma 2.1 Suppose T and T^* have distinct topologies. Then there exist disjoint subtrees B, D in T s.t. $B, D,$ and $B \cup D$ are subtrees of T^*, but $B \cup D$ is not a subtree of T.

Proof: Given T and T^*, we have

1) x, y are a cherry in T^* but not in T
2) $C(T^*) \subseteq C(T)$
SPR Sequence (RF Distance)

Lemma 3.2 Suppose T and T^* are two trees with distinct topologies. Then there exists T' s.t.

$$d_{SPR}(T, T') = 1 \quad \text{and} \quad d_{RF}(T^*, T') < d_{RF}(T^*, T)$$

Lemma 2.1 Suppose T and T^* have distinct topologies. Then there exist disjoint subtrees B, D in T s.t. $B, D,$ and $B \cup D$ are subtrees of T^*, but $B \cup D$ is not a subtree of T.

![Diagram showing two trees T and T' with disjoint subtrees B and D.](image)

$$S_{nb}(T) = S_{nb}(T')$$

Input: T, σ^*
Goal: T^*
Lemma 3.2 Suppose T and T^* are two trees with distinct topologies. Then there exists T' s.t.

\[d_{\text{SFR}}(T,T') = 1 , \quad d_{\text{RF}}(T',T^*) < d_{\text{RF}}(T^*,T) \]

1. $S_{\text{nb}}(T) = S_{\text{nb}}(T')$,
2. $S_b(T) \cap S(T^*) = \emptyset$, since the only splits of T^* which separate B and D are S_1 and S_2, and
3. $S_b(T') \cap S(T^*) \neq \emptyset$ since S_c is a split of T' and T^*.

SPR Sequence (RF Distance)
Theorem 3.1. If T^* is a fixed tree and T is any other tree, then there is a sequence s.t.

\[\text{and each arrow is a single SPR move.} \]

SPR Sequence (RF Distance)

1. “For two distinct phylogenetic trees T and T^*, there is a sequence of SPR operations that transforms T into T^* and decreases the RF distance at every step.”

Theorem 3.1. If T^* is a fixed tree and T is any other tree, then there is a sequence s.t.

\[d_{RF}(T_i, T^*) - d_{RF}(T_{i+1}, T^*) > 0, \]

and each arrow is a single SPR move.

Lemma 3.2 Suppose T and T^* are two trees with distinct topologies. Then there exists T' s.t.

\[d_{SPR}(T, T') = 1 \quad \text{and} \quad d_{RF}(T^*, T') < d_{RF}(T^*, T) \]

Lemma 2.1 Suppose T and T^* have distinct topologies. Then there exist disjoint subtrees B, D in T s.t. $B, D,$ and $B \cup D$ are subtrees of T^*, but $B \cup D$ is not a subtree of T.

Input: T, σ^*
Goal: T^*
Overview

1. Introduction
2. Main Conclusions
3. SPR Sequence (RF Distance)
4. BSPPR consistency
5. Q & A
Theorem 5.2 Let T be a tree with distinct topology from T^*. Provided then

$$\bar{i}(T) - \bar{i}(T^*) > 0$$

Lemma 2.1 Suppose T and T^* have distinct topologies. Then there exist disjoint subtrees B, D in T s.t. $B, D,$ and $B \cup D$ are subtrees of T^*, but $B \cup D$ is not a subtree of T.

Lemma 5.1 Produces a definition for

$$\bar{i}(e) - \bar{i}(e') > 0 = \bar{i}(T) - \bar{i}(T')$$

BSPR Consistency

3. “BSPR algorithm is consistent and has safety radius of at least $\frac{1}{3}$.”
Theorem 5.2 Let \(T \) be a tree with distinct topology from \(T^* \). Provided then:

\[
\tilde{i}(T) - \tilde{i}(T^*) > 0
\]

Lemma 5.1 Produces a definition for

\[
\tilde{i}(e) - \tilde{i}(e') > 0 = \tilde{i}(T) - \tilde{i}(T')
\]

|\(|\sigma_{ab} - \sigma'_{ab}| < \varepsilon \) : \(\frac{1}{2} \min_{e \in E(T^*)} l(e) \forall a, b \in X \) |

\[
(\delta_{C_0b} - \delta_{C_0C_i} + \delta_{C_iB}) \geq 2l(e_x) + 2\delta^*_x - 3\varepsilon
\]
BSPR Consistency

3. "BSPR algorithm is consistent and has safety radius of at least $\frac{1}{3}$."

If $|\sigma_{ab} - \sigma_{ab}^*| < \epsilon := \frac{1}{3} \min_{e \in E(T^*)} l(e) \forall a, b \in X$ then the unique tree that achieves the minimal tree length is the correct tree T^*. The $\frac{1}{3}$ minimum edge length radius holds regardless of the method used to find the shortest tree (i.e. Ordinary Least Squares ME can be used).

Lemma 2.1 Suppose T' and T^* have distinct topologies. Then there exist disjoint subtrees B, D in T' s.t. B, D, and $B \cup D$ are subtrees of T^*, but $B \cup D$ is not a subtree of T'.

Theorem 5.2 Let T'' be a tree with distinct topology from T'. Provided $|\sigma_{ab} - \sigma_{ab}^*| < \epsilon := \frac{1}{3} \min_{e \in E(T^*)} l(e) \forall a, b \in X$ then $\hat{i}(T) - \hat{i}(T') > 0$.

Overview

1. Introduction
2. Main Conclusions
3. SPR Sequence (RF Distance)
4. BSPPR consistency
5. Q & A
Overview

1. Introduction
2. Main Conclusions
3. SPR Sequence (RF Distance)
4. BSPPR consistency
5. Q & A
Thanks for listening!

Advantages:
- Language readable, provided examples

Disadvantages:
- Notation was inconsistent, diagrams’ captions were not always very helpful, no intuition provided, provided context

Bonus: Open Questions

1. They didn’t prove BNNI
2. Authors believe BME safety radius should be \(\frac{1}{2} \), but proof remains open