CS 173, Fall 2015 Examlet 3, B Lecture Solutions

Problem 2: 15 points. Let $S = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, and recall that P(S) denotes the power set of the set S. Let R be a relation on $P(S) \times P(S)$ defined by $R = \{(x, y) \in P(S) \times P(S) : x \subseteq y\}$.

- Give an element of *R* (2 pts) Answer: ({1}, {1,2,3}).
- Give a pair x, y of subsets of S where (x, y) is not an element of R (2 pts) Answer: $x = \{1\}, y = \{2, 3\}.$
- Prove that R is reflexive (3 pts) Answer: Let $x \in P(S)$. Note that $A \subseteq A$ for any set A, and so $x \subseteq x$. Hence, $(x, x) \in R$.
- Prove that R is anti-symmetric (4 pts)
 Long Answer: suppose (x, y) ∈ R and (y, x) ∈ R. Hence x ⊆ y ⊆ x. If y ≠ x then since x ⊆ y, it must be that ∃a ∈ y \ x. But then y ⊈ x, contradicting (y, x) ∈ R. Hence y = x. Short answer: suppose (x, y) ∈ R and (y, x) ∈ R. Hence x ⊆ y ⊆ x. But then x = y.
- Prove that R is transitive (4 pts) Answer: Suppose $(x, y) \in R$ and $(y, z) \in R$. Then $x \subseteq y$ and $y \subseteq z$. Hence $x \subseteq z$. Furthermore, x, y, and z are all subsets of S. Hence, $(x, z) \in R$.