CS 581

Tandy Warnow
Today

• Additive matrices
• The Four Point Condition
• The Four Point Method
• The Naïve Quartet Method
• The Cavender-Farris-Neyman model
• Estimating Cavender-Farris-Neyman model trees
• Estimating Jukes-Cantor model trees
• More complicated DNA sequence evolution models

See textbook Chapter 1, 8.1-8.2
Phylogeny Problem

AGGGGAT TAGCCCCA TAGACTT TGCACAAA TGCACCTT

U V W X Y
Distance-based Methods

TRUE TREE

S1 S2 S3 S4

DNA SEQUENCES

S1 ACAATTAGAAC
S2 ACCCTTAGAAC
S3 ACCATTCGAAC
S4 ACCAGACCAAC

STATISTICAL ESTIMATION OF PAIRWISE DISTANCES

DISTANCE MATRIX

<table>
<thead>
<tr>
<th></th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>S2</td>
<td>0</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>S3</td>
<td>0</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S4</td>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

METHODS SUCH AS NEIGHBOR JOINING
Additive Matrices

• A square matrix $D=\begin{bmatrix} d_{ij} \end{bmatrix}$ is additive if and only if there is a tree T and edge-weighting w such that for all pairs i,j of leaves, d_{ij} is the path distance in T between i and j.

• We note this by saying D corresponds to (T,w).
Four Point Condition

• Theorem: Let $D = [d_{ij}]$ be an additive matrix. Then, for every four indices i,j,k,l, the median and maximum of the three pairwise sums are the same:

$$d_{ij} + d_{kl}$$
$$d_{ik} + d_{jl}$$
$$d_{il} + d_{jk}$$
Proof of the Four Point Condition
Using the Four Point Condition

• Given a 4x4 additive matrix D, can you find the tree T (and edge-weighting w) that corresponds to D?
Using the Four Point Condition

• How would you construct a tree on a set of \(n > 4 \) leaves, if you had an additive matrix?
Four Point Method

• Task: Given 4x4 dissimilarity matrix, compute a tree on four leaves
• Solution: Compute the three pairwise sums, and take the split $ij|kl$ that gives the minimum!

Does this work? Why?
Naïve Quartet Method

- Compute the tree on each quartet using the four-point method
- Merge them into a tree on the entire set if they are compatible:
 - Find a sibling pair A,B
 - Recurse on S-{A}
 - If S-{A} has a tree T, insert A into T by making A a sibling to B, and return the tree
Naïve Quartet Method, cont.

• Theorem: Let $D = [d_{ij}]$ be an additive matrix corresponding to an edge-weighted tree (T, w). Then the Naïve Quartet Method applied to D returns T.

• Proof: all estimated quartet trees are correct (by the Four Point Condition), and an induction proof shows the Naïve Quartet Method returns T.
Distance-based Methods

TRUE TREE

- S_1
- S_2
- S_3
- S_4

DNA SEQUENCES

- S_1: ACAATTAGAAC
- S_2: ACCCTTAGAAC
- S_3: ACCATCCTCAAC
- S_4: ACCAGACCAAC

INFERRED TREE

- S_1
- S_3
- S_2
- S_4

- S_1 and S_3 are closer together.

METHODS SUCH AS NEIGHBOR JOINING

DISTANCE MATRIX

<table>
<thead>
<tr>
<th></th>
<th>S_1</th>
<th>S_2</th>
<th>S_3</th>
<th>S_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>S_2</td>
<td>0</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>S_3</td>
<td>0</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S_4</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STATISTICAL ESTIMATION OF PAIRWISE DISTANCES
Dissimilarity Matrices

• A square matrix that is symmetric and zero on the diagonal is called a **dissimilarity matrix**.

• A dissimilarity matrix may not satisfy the triangle inequality.

In phylogenetics, the distance matrices we calculate are dissimilarity matrices.

Can we construct a tree from a dissimilarity matrix?
Error tolerance for NQM

• Suppose every pairwise distance is estimated well enough (within $f/2$, for f the minimum length of any edge).
• Then the Four Point Method returns the correct tree on every quartet.
• And so all quartet trees are compatible, and NQM returns the true tree.
Phylogeny estimation as a statistical inverse problem
Estimation of evolutionary trees as a statistical inverse problem

• We can consider characters as properties that evolve down trees.

• We observe the character states at the leaves, but the internal nodes of the tree also have states.

• The challenge is to estimate the tree from the properties of the taxa at the leaves. This is enabled by characterizing the evolutionary process as accurately as we can.
DNA Sequence Evolution

AAGACTT

- 3 mil yrs
- 2 mil yrs
- 1 mil yrs
today

AAGGCCT

AGGGCAT
TAGCCCCA
TAGACCTT
AGCACAA
AGCGCTT
Phylogeny Problem

AGGGCAT TAGCCCA TAGACTT TGCACAA TGCGGCTT
Jukes-Cantor (1969) Model

- The model tree T is binary and has substitution probabilities $p(e)$ on each edge e.
- The state at the root is randomly drawn from $\{A,C,T,G\}$ (nucleotides)
- If a site (position) changes on an edge, it changes with equal probability to each of the remaining states.
- The evolutionary process is Markovian.

More complex models (such as the General Time Reversible model, or the General Markov model) are also considered, often with little change to the theory.
Questions about model trees

• Is the model tree topology identifiable?

• Are the branch lengths and other numeric parameters of the model tree identifiable?

• Is the root of the model tree identifiable?
Answers about model trees

- Is the model tree topology identifiable? – yes
- Are the branch lengths and other numeric parameters of the model tree identifiable? – yes
- Is the root of the model tree identifiable? – no
Distance-based Methods

TRUE TREE

INFERRED TREE

DNA SEQUENCES

DISTANCE MATRIX

METHODS SUCH AS NEIGHBOR JOINING

STATISTICAL ESTIMATION OF PAIRWISE DISTANCES
Performance criteria

- Running time
- Space
- Statistical performance issues (e.g., statistical consistency and sequence length requirements)
- “Topological accuracy” with respect to the underlying true tree, typically studied in simulation.
- Accuracy with respect to a mathematical score (e.g. tree length or likelihood score) on real data
FN: false negative (missing edge)
FP: false positive (incorrect edge)

50% error rate
Statistical models

- Simple example: coin tosses.
- Suppose your coin has probability p of turning up heads, and you want to estimate p. How do you do this?
Estimating p

• Toss coin repeatedly
• Let your estimate q be the fraction of the time you get a head

• Obvious observation: q will approach p as the number of coin tosses increases

• This algorithm is a statistically consistent estimator of p. That is, your error $|q-p|$ goes to 0 (with high probability) as the number of coin tosses increases.
Another estimation problem

• Suppose your coin is biased either towards heads or tails (so that \(p \) is not 1/2).
• How do you determine which type of coin you have?

• Same algorithm, but say “heads” if \(q > 1/2 \), and “tails” if \(q < 1/2 \). For large enough number of coin tosses, your answer will be correct with high probability.
Phylogeny Estimation

- Simplest type of data: presence/absence of a property (e.g., has wings, has hair, has a particular amino acid)
- Treat this as binary character evolution, with 0 representing absence and 1 representing presence.
- How do we model the evolution of these binary characters?
Jukes-Cantor (1969) Model

- The model tree T is binary and has substitution probabilities $p(e)$ on each edge e.
- The state at the root is randomly drawn from $\{A,C,T,G\}$ (nucleotides).
- If a site (position) changes on an edge, it changes with equal probability to each of the remaining states.
- The evolutionary process is Markovian.

More complex models (such as the General Time Reversible model, or the General Markov model) are also considered, often with little change to the theory.
Cavender-Farris-Neyman (CFN)

- Models binary sequence evolution
- For each edge e, there is a probability $p(e)$ of the property “changing state” (going from 0 to 1, or vice-versa), with $0 < p(e) < 0.5$ (to ensure that unrooted CFN tree topologies are identifiable).
- Every position evolves under the same process, independently of the others.
Estimating trees under statistical models…

• Instead of directly estimating the tree, we try to estimate the process itself.

• For example, we try to estimate the probability that two leaves will have different states for a random character.
CFN pattern probabilities

• Let x and y denote nodes in the tree, and p_{xy} denote the probability that x and y exhibit different states.

• Theorem: Let p_i be the substitution probability for edge e_i, and let x and y be connected by path $e_1e_2e_3...e_k$. Then

$$1 - 2p_{xy} = (1 - 2p_1)(1 - 2p_2)...(1 - 2p_k)$$
And then take logarithms

• The theorem gave us:
 \[1 - 2p_{xy} = (1 - 2p_1)(1 - 2p_2)\ldots(1 - 2p_k)\]

• If we take logarithms, we obtain
 \[\ln(1 - 2p_{xy}) = \ln(1 - 2p_1) + \ln(1 - 2p_2) + \ldots + \ln(1 - 2p_k)\]

• Since these probabilities lie between 0 and 0.5, these logarithms are all negative. So let’s multiply by -1 to get positive numbers.
An additive matrix!

• Consider a matrix \(D(x,y) = -\ln(1-2p_{xy}) \)

• This matrix is additive (i.e., fits a tree exactly)!

• Can we estimate this additive matrix from what we observe at the leaves of the tree?

• Key issue: how to estimate \(p_{xy} \).

• (Recall how to estimate the probability of a head…)
Distance-based Methods

TRUE TREE

DNA SEQUENCES

<table>
<thead>
<tr>
<th></th>
<th>S_1</th>
<th>S_2</th>
<th>S_3</th>
<th>S_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>ACAATTAGAAC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S_2</td>
<td>ACCCTTAGAAC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S_3</td>
<td>ACCATCCTCAAC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S_4</td>
<td>ACCAGACCAAC</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INFERRED TREE

METHODS SUCH AS NEIGHBOR JOINING

DISTANCE MATRIX

<table>
<thead>
<tr>
<th></th>
<th>S_1</th>
<th>S_2</th>
<th>S_3</th>
<th>S_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>S_2</td>
<td>0</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>S_3</td>
<td>0</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S_4</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STATISTICAL ESTIMATION OF PAIRWISE DISTANCES
Estimating CFN distances

• Consider
 \[d_{ij} = -\frac{1}{2} \ln \left(1 - \frac{2H(i,j)}{k} \right), \]
 where \(k \) is the number of characters, and \(H(i,j) \) is the Hamming distance between \(s_i \) and \(s_j \).

• Theorem: as \(k \) increases,
 \[d_{ij} \text{ converges to } D_{ij} = -\frac{1}{2} \ln \left(1 - 2p_{ij} \right), \]
 which is an additive matrix.
Four Point Method (FPM)

• Task: Given 4x4 dissimilarity matrix, compute a tree on four leaves
• Solution: Compute the three pairwise sums, and take the split $ij|kl$ that gives the minimum!
• When is this guaranteed accurate?
Error tolerance for FPM

• Suppose every pairwise distance is estimated well enough (within $f/2$, for f the minimum length of any edge).

• Then the Four Point Method returns the correct tree (i.e., $ij+kl$ remains the minimum)
Naïve Quartet Method (NQM)

• Compute the tree on each quartet using the four-point method
• Merge them into a tree on the entire set if they are compatible:
 – Find a sibling pair A,B
 – Recurse on S-{A}
 – If S-{A} has a tree T, insert A into T by making A a sibling to B, and return the tree
Error tolerance for NQM

• Suppose every pairwise distance is estimated well enough (within $f/2$, for f the minimum length of any edge).

• Then the Four Point Method returns the correct tree on every quartet.

• And so all quartet trees are compatible, and NQM returns the true tree.
In other words:

• The NQM method is statistically consistent methods for estimating CFN trees!
• Plus it is polynomial time!
Statistical Consistency

error

Data
What about DNA sequence evolution?

• The proof of statistical consistency for the NQM under the CFN model only really depended on the guarantee that CFN estimated distances converge, as the sequence length increase, to an additive matrix.

• What about DNA sequence evolution models?
Jukes-Cantor (1969) Model

- The model tree T is binary and has substitution probabilities $p(e)$ on each edge e.
- The state at the root is randomly drawn from \{A,C,T,G\} (nucleotides)
- If a site (position) changes on an edge, it changes with equal probability to each of the remaining states.
- The evolutionary process is Markovian.

More complex models (such as the General Time Reversible model, or the General Markov model) are also considered, often with little change to the theory.
Distance-based Methods

TRUE TREE:

INFERRED TREE:

DNA SEQUENCES:

DISTANCE MATRIX:

METHODS SUCH AS NEIGHBOR JOINING

STATISTICAL ESTIMATION OF PAIRWISE DISTANCES
Jukes-Cantor Tree Estimation

- Step 1: Compute Hamming distances
- Step 2: Correct the Hamming distances, using the JC distance calculation
- Step 3: Use NQM to construct the tree
In other words:

Theorem: The NQM method is statistically consistent methods for estimating JC trees, and uses polynomial time!

Notes:

• This is true for other models – all you need is a statistically consistent technique to estimate an additive matrix that corresponds to an edge-weighting of the model tree.

• This is also true for other distance-based methods (e.g., neighbor joining).
Statistical gene tree estimation methods either with a substitution probability \(p(e) \) for edge \(e \) or with a branch length \(l(e) \) on edge \(e \) indicating the expected number of changes on edge \(e \), just as we did for the CFN model. In that formulation, \(l(e) = 34 \ln \left(\frac{3}{4} p(e) \right) \). However, we can also write this in terms of a rate matrix and branch lengths (using the same lengths as given above), where \(Q_{xy} = Q_{uv} \) for \(x \neq y \) and \(u \neq v \). We also need to specify the distribution of states at the root, which is given by \(p_x = \frac{1}{4} \) for all nucleotides \(x \). Thus, the JC69 model is an example of a model that can be expressed in terms of a common rate matrix across the tree.

The Generalised Time Reversible (i.e., GTR) model (Tavaré, 1986) makes the fewest constraints on the rate matrix of all the time-reversible stationary models, and is the most commonly used model for phylogenetic inference on DNA sequences. Intermediate models, some of which are shown in Figure 8.1, can be obtained by relaxing the constraint given in the JC69 model in various ways. The models in the figure are all identifiable, and estimation under these models is generally computationally feasible. These are all examples of standard DNA site evolution models, with GTR the most complex of the standard models; see Hillis et al. (1996); Li (1997); Yang (2014) for more information.

Figure 3.9 A classification of the most important DNA models. Starting with the simple Jukes-Cantor model, more general models can be obtained by allowing unequal base frequencies or more than one substitution parameter. The most general model of this type is the GTR model that allows unequal base frequencies and prescribes a different substitution parameter for each of the six pairs of different bases. In summary, the Jukes-Cantor model of DNA evolution assumes that all four bases (A, C, G and T) occur with the same frequencies (0.25) and that changes from one base to another occur at the same rate between all bases. There are many ways to relax these conditions to obtain more general models. For example, if we let the bases occur with different and arbitrary frequencies (although they have to sum to 1), and allow two different rates of change, one for transitions (that is, changes between A and G or between C and T) and a second one for transversions (all other changes), then we obtain the so-called Hasegawa-Kishino-Yano model. Both the Jukes-Cantor model and the Hasegawa-Kishino-Yano model are special cases of the general time reversible model, see Figure 3.9.

Another important way to obtain more general models of DNA evolution is to allow different substitution rates at different positions in the sequence. For example, this is often done by defining a discrete collection of rate classes using a Gamma distribution, which is popular because it has one main parameter, \(\alpha \), that determines the shape of the distribution \(\alpha < 1 \), then the distribution is exponentially shaped and asymptotic to both the vertical and horizontal axes. \(\alpha = 1 \), then the result is an exponential distribution. For \(\alpha > 1 \), the Gamma distribution assumes a unimodal, but skewed shape.