
Well-Connected Communities in Real-World and
Synthetic Networks

Minhyuk Park,1
†

Yasamin Tabatabaee,1
†

Vikram Ramavarapu,1
†

Baqiao Liu,1 Vidya K. Pailodi,1 Rajiv Ramachandran,1 Dmitriy Korobskiy,2

Fabio Ayres,3 George Chacko,1,4∗ Tandy Warnow1∗

1Department of Computer Science, University of Illinois Urbana-Champaign, IL 61801, USA
2NTT DATA, McLean, VA 22102, USA

3Insper Institute, São Paulo, Brazil
4Grainger College of Engineering, University of Illinois Urbana-Champaign, IL 61801, USA

∗To whom correspondence should be addressed; E-mail: chackoge@illinois.edu; warnow@illinois.edu
†Contributed equally to this manuscript.

1

Integral to the problem of detecting communities through graph clustering

is the expectation that they are “well connected”. In this respect, we exam-

ine five different community detection approaches optimizing different crite-

ria: the Leiden algorithm optimizing the Constant Potts Model, the Leiden al-

gorithm optimizing modularity, Iterative K-Core Clustering (IKC), Infomap,

and Markov Clustering (MCL). Surprisingly, all these methods produce, to

varying extents, communities that fail even a mild requirement for well con-

nectedness. To remediate clusters that are not well connected, we have de-

veloped the “Connectivity Modifier” (CM), which, at the cost of coverage, it-

eratively removes small edge cuts and re-clusters until all communities pro-

duced are well connected. Results from real-world and synthetic networks

illustrate a tradeoff users make between well connected clusters and cover-

age, and raise questions about the “clusterability” of networks and models of

community structure. CM is available on github.

2

Introduction Community detection is of broad interest and is typically posed as a graph par-

titioning problem, where the input is a graph and the objective is a partitioning of its vertices

into disjoint subsets, so that each subset represents a community (1–3). The terms community

and cluster overlap heavily, so we use them interchangeably herein. Our interest in community

detection is for the purpose of identifying research communities from the global scientific lit-

erature, so we are especially focused on methods that can scale to large networks consisting of

documents linked by citation (4–7).

A unifying definition of community does not exist but a general expectation is that the

vertices within a community are better connected to each other than to vertices outside the

community (8), implying greater edge density within a community. However, a cluster may be

dense while still having a small edge cut (9). Therefore, the minimum edge cut size (min cut)

for a community should not be small (10). Thus, edge density and well-connectedness, i.e., not

having a small edge cut, are two separable and expected properties of communities.

The Leiden algorithm (10), which builds upon the Louvain algorithm (11), is commonly

used for community detection, with default quality function the Constant Potts Model (CPM)

(12). Clusters produced by CPM-optimization have the desirable property that if the edge cut

splits the cluster into components A and B, then the edge cut will be at least r× |A| × |B| (10,

Supplementary Materials), where r is a user-provided resolution parameter. This guarantee is

strong when the edge cut splits a cluster into two components of approximately equal size, but is

weaker when it produces an imbalanced split and weakest when the cut separates a single node

from the remaining nodes in the cluster. Importantly, the guarantee depends on r, and small

values of r produce weak bounds. Finally, we note that this guarantee applies to CPM-optimal

clusterings but not to clusterings found by heuristics.

In using the Leiden software optimizing CPM, we observed that it produces clusters with

small min cuts on seven different networks of varied origin ranging in size from approximately

3

34,000 to 75 million nodes. We also observed that the number of clusters with small min cuts

increases as the resolution parameter decreases. Intrigued by this observation, we performed a

broader study to evaluate the extent to which clusters produced by algorithms of interest meet

even a mild standard for a well connected cluster.

To evaluate whether a cluster is well connected, we use a slow growing function f(n) so that

a cluster with n nodes whose min cut size is at most f(n) will not be considered well connected.

By design, we ensure that (i) f(n) grows more slowly than the lower bound on the min cut size

for clusters in CPM-optimal clusterings in the Leiden algorithm and (ii) that f(n) provides a

meaningful lower bound on the small-to-moderate values of n where the bound in (10) is weak.

We selected f(n) = log10 n for this function.

We constructed min cut profiles from four additional clustering methods with different op-

timality criteria on the seven networks above: Leiden with modularity (1) as quality function;

the k-core based Iterative k-core Clustering (IKC) (4) using k = 10; and two flow-based meth-

ods, Infomap (13) and Markov clustering (MCL) (14). None of these methods offer guarantees

of well connected clusters. While only IKC and Leiden optimizing either CPM or modularity

scaled to the largest network we studied, all tested methods produced poorly connected clusters

(i.e., clusters with min cuts of size at most f(n)) on these networks. These observations reveal

a gap between the expectation of well connected clusters and what is actually being produced

by these community finding methods. These findings also raise questions about the “clusterabil-

ity” (15) of networks and whether only portions of a network exhibit community structure.

For practical remediation, we developed the Connectivity Modifier (CM), available at

https://github.com/illinois-or-research-analytics/cm_pipeline (16).

CM takes a clustering as input and returns well connected clusters that are also at least a min-

imum size B, where the setting for B as well as the definition of “well connected” can be set

by the user (our default setting uses the function f(n) given above and B = 11). CM presently

4

https://github.com/illinois-or-research-analytics/cm_pipeline

provides support for Leiden optimizing either CPM or modularity and IKC, the methods that

scaled to the largest network we studied. On real-world networks, using CM in conjunction

with the Leiden method produces well connected clusters but with a reduction in node cover-

age. We observed similar results of lower magnitude with IKC. Analyses of synthetic networks

with ground truth communities show somewhat different trends, revealing intriguing differences

between synthetic and real-world networks.

The rest of this manuscript is organized as follows. First, we present an initial study on a

large citation network showing conditions under which Leiden clusters are not well connected.

Next we present comparable results from additional methods and networks. We then describe

the design of Connectivity Modifier (CM) and show the impact of using CM on clusterings by

Leiden and IKC on real world and synthetic networks. Finally, we close with a discussion of

our findings.

Results

In a study of the Open Citations network (17) consisting of 75,025,194 nodes, we computed

the min cut of all clusters generated using the Leiden algorithm optimizing either CPM or

modularity (Fig. 1). Designating singleton clusters and very small clusters as not being of

practical interest, we report node coverage throughout this manuscript as the percentage of

nodes in clusters of size at least 11; the exception to this is Figure 4, where we report node

coverage based on non-singleton clusters. For CPM, we used five different resolution values

(0.5, 0.10, 0.01, 0.001, and 0.0001) that resulted in node coverage values ranging from 6-99%.

For Leiden-CPM clusterings, we see that as the resolution value is decreased, (i) node cov-

erage increases, (ii) the frequency of small mincuts increases, and (iii) cluster sizes increase

(Fig. 1). Clustering under modularity is most similar to clustering under CPM at the lowest

resolution value used. Strikingly, 98.7% of 2,184 clusters produced under modularity had a

5

6.0% 43.8% 88.9% 90.5% 91.9% 99.4%
0

1

2

3

0.5 0.1 0.01 0.001 0.0001 mod
clustering

lo
g1

0(
co

nn
ec

tiv
ity

)

Figure 1: Node coverage, connectivity, and size distribution of clusters generated by Leiden
optimizing either CPM or modularity on the Open Citations network (75,025,194 nodes). Con-
nectivity (y-axis) is the minimum edge cut size (min cut) of each cluster. Node coverage, the
percentage of nodes in clusters of at least size 11, is reported in blue text. Results are shown for
clusters of at least size 11 from Leiden optimizing either CPM at five different resolution val-
ues or modularity. Higher node coverage is associated with reduced connectivity. Within each
clustering, larger clusters are better connected although lower resolution values and modularity
trend towards larger clusters that are less well connected.

minimum edge cut size of 1 (i.e., could be split by removing a single edge) while accounting

for 99.4% node coverage. Additionally, where node coverage is high, clusters tend to be larger

and fewer although intermediate resolution values in the range we used result in an increase in

the number of clusters (Fig. 1 and Table S1). Thus, these data illustrate a tradeoff that users

make with the Leiden algorithm between small clusters, lower node coverage, and few small

min cuts (achieved by CPM-optimization with larger resolution values) versus larger clusters,

higher node coverage, and many more small min cuts (achieved by modularity-optimization or

CPM-optimization with small resolution values).

While a large fraction of small min cuts intuitively signals “poorly-connected” clusters,

there are different ways of formalizing this notion. Here we offer a formal definition for the

purposes of this study. Briefly, we consider functions f(n) with the interpretation that if a

6

cluster of size n has an edge cut of size at most f(n) then the cluster will be considered poorly

connected. We want f(n) to grow very slowly so that it serves as a mild bound. We also

want f(n) ≥ 1 for all n that are large enough for the cluster to be considered a potential

community. From three examples of slowly growing functions (Materials and Methods), we

choose f(n) = log10 n, the function that imposes the mildest constraint on large clusters and

grows more slowly than the bound in (10).

In addition to the Open Citations network, we clustered six other networks, ranging in size

from 34,546 nodes to 13,989,436 nodes, with Leiden, IKC, Infomap, and MCL and computed

the percentage of clusters that we consider well connected (i.e., whose min cuts were greater

than f(n)). Under the conditions used, Leiden and IKC ran to completion on all seven networks,

although IKC did not return any clusters from wiki talk because a 10-core does not exist in this

sparse network. Infomap failed on the largest network, and MCL returned output only from the

smallest network (cit hepph) we analyzed (Fig. 2).

For Leiden clustering optimizing CPM (Fig. 1), the frequency of well connected clusters

decreases with resolution value, and results from modularity are similar to the lowest resolu-

tion value for CPM that was tested. IKC completed on all networks returning well connected

clusters that varied between 85.9% and 94% of the total number of clusters. In comparison to

Leiden, IKC clustering resulted in lower node coverage, which is consistent with its more con-

servative formulation. Infomap produced well connected clusters varying from 5% (orkut) to

92.4% (cit patents). MCL ran only on the cit hepph network with 81.3% of the clusters being

well connected. Interestingly, while neither Leiden nor IKC generated disconnected clusters,

Infomap generated disconnected clusters for some networks (maximized at 75% for orkut) and

MCL also generated disconnected clusters (7.2%) on the cit hepph network. These observa-

tions reveal the widespread existence of clusters that are not well connected, with the extent

dependent on clustering method and network.

7

wiki_topcats

cit_patents orkut wiki_talk

oc cen cit_hepph

0 25 50 75 100

0 25 50 75 100 0 25 50 75 100

leiden_0.5

leiden_0.1

leiden_0.01

leiden_0.001

leiden_0.0001

leiden_modularity

leiden_0.5

leiden_0.1

leiden_0.01

leiden_0.001

leiden_0.0001

leiden_modularity

leiden_0.5

leiden_0.1

leiden_0.01

leiden_0.001

leiden_0.0001

leiden_modularity

Percent Well−Connected Clusters

cl
us

te
rin

g

clustering

leiden_0.5

leiden_0.1

leiden_0.01

leiden_0.001

leiden_0.0001

leiden_modularity

(a) Leiden CPM & Modularity

wiki_topcats

cit_patents orkut wiki_talk

oc cen cit_hepph

0 25 50 75

0 25 50 75 0 25 50 75

ikc

infomap

mcl

ikc

infomap

mcl

ikc

infomap

mcl

Percent Well−Connected Clusters

cl
us

te
rin

g

clustering

ikc

infomap

mcl

(b) IKC, Infomap, MCL

Figure 2: Percentage of Well Connected Clusters. Clustering of seven networks by five dif-
ferent community finding approaches. Networks analyzed are Open Citations (75,025,194),
Curated Exosome Network (13,989,436), cit hepph (34,546), and cit patents (3,774,768) are
citation networks; orkut (3,072,441) is a social network; wiki talk (2,394,385) and wiki topcats
(1,791,489) are Wikipedia communication and hyperlink networks respectively. Only Leiden
and IKC ran to completion on all networks although IKC did not return any clusters from the
wiki talk network. Infomap completed on all but Open Citations. MCL completed only on
cit hepph.

Towards well connected clusters, we designed the Connectivity Modifier (CM) (16, 18) a

remediation tool that can be used to modify a given clustering to ensure that each final cluster

is well connected (Materials and Methods). Based on our preliminary findings, we chose to

initially evaluate CM paired with the Leiden and IKC methods since these two clustering meth-

ods were sufficiently scalable and did not produce disconnected clusters. We also restricted our

attention to the two largest networks, Open Citations and CEN.

We implemented CM in a pipeline (Fig. 3) that presently takes a Leiden or IKC clustering as

input. A pre-processing (filtering) step discards very small clusters, i.e., those of size at most 10,

but this bound can be changed by the user. Tree clusters are also discarded in this pre-processing

step (given our definition of f(n), any tree of size 10 or larger is not well connected). CM then

8

iteratively computes and removes any min cuts of size at most f(n) and re-clusters until only

well connected clusters remain. A post-processing step removes any small clusters of size at

most 10 that may have resulted from repeated cutting.

Input

Network

Clustering Filtered

Clustering

Leiden

IKC

Min Size

Remove

Trees

Well
Connected

Clusters

Connectivity

Modifier

Re-filtered

Clustering

Min Size

MinCut Re-Cluster

User-set threshold

Figure 3: Connectivity Modifier Pipeline Schematic. The four-stage pipeline depends on user-
specified algorithmic parameters: B, the minimum allowed size of a cluster, and f(n), a bound
on the minimum edge cut size for a cluster with n nodes, and clustering method. Stage 1: a
clustering is computed. Stage 2: clusters are pre-processed by removing trees and those clusters
of size less than B. Stage 3: the CM is applied to each cluster, removing edge cuts of sizes at
most f(n), reclustering, and recursing. Stage 4: clusters are post-processed by removing those
of size less than B. All clusters returned are well connected according to f(n) and have size at
least B. Our study explored default settings with B = 11 and f(n) = log10 n.

9

.

Effect of CM on node coverage We assessed the impact of CM on node coverage, here

specifically examining clusters of size at least two. As above, we examined Leiden clustering

of Open Citations and CEN networks using CPM-optimization at five resolution values and

also using modularity, examining the change in node coverage before and after CM treatment

(Fig. 4). The results are resolution dependent and network sensitive. For CPM-optimization,

the impact of filtering out clusters of size at most 10 is large for the two larger resolution values,

but then decreases as the resolution value decreases. In contrast, the impact of the Connectivity

Modifier (the middle component of the CM pipeline that iteratively finds and removes small

edge cuts and reclusters) also depends on the resolution parameter, with a minimal impact for

the large resolution values and an increasing impact as the resolution value decreases. Mod-

ularity returned results most similar to CPM-optimization with the smallest tested resolution

value. Since the pre-processing (filtering) and post-processing both remove all clusters of size

at most 10, the node coverage reported for these stages are with respect to clusters of size at

least 11. Given this, we observe that post-CM node coverage is low compared to pre-CM for

both networks and clustering methods, and was smallest when using CPM-optimization with

resolution value r = 0.5 and largest when using CPM-optimization with one of the two small-

est resolution values, r = 0.001 for CEN and r = 0.0001 for Open Citations. Overall, post-CM

node coverage of any Leiden clustering never exceeded 24.6% for CEN and 68.7% for Open

Citations.

Cluster fate To understand the nature of the modifications effected by CM, we further clas-

sified the Leiden clusters based on the impact of CM-processing: extant, reduced, split, and

degraded, where “extant” indicates that the cluster was not modified by CM, “reduced” indi-

cates that the cluster is reduced in size, “split” indicates that the cluster was divided into at

10

0

25

50

75

100

leiden_0.5

leiden_0.1

leiden_0.01

leiden_0.001

leiden_0.0001

leiden_m
od

pe
rc

en
t n

od
e

co
ve

ra
ge

(a) Open Citations

0

25

50

75

100

leiden_0.5

leiden_0.1

leiden_0.01

leiden_0.001

leiden_0.0001

leiden_m
od

pe
rc

en
t n

od
e

co
ve

ra
ge

(b) CEN

Figure 4: Reduction in node coverage after CM treatment of Leiden clusters. The Open Ci-
tations (left panel) and CEN (right panel) networks were clustered using the Leiden algorithm
under CPM at five different resolution values or modularity. Node coverage (defined as the per-
centage of nodes in cluster of size at least 2) was computed for Leiden clusters • (lime green),
Leiden clusters with trees and/or clusters of size 10 or less filtered out • (soft orange), and after
CM treatment of filtered clusters • (desaturated blue).

least two smaller clusters, and “degraded” indicates that the cluster was reduced to singletons

or a cluster of size at most 10. We report the fraction in each category (Fig. 5) for six different

clustering conditions on the Open Citations and CEN networks. When using CM with CPM-

optimization with a very large resolution value, most clusters are extant, the fraction of extant

clusters decreases for CPM-optimization as the resolution value decreases, and is low also for

modularity (Fig. 2).

An interesting trend with split clusters is seen in Figure 5, indicating the initial cluster con-

tained two or more well connected clusters; this is similar to the observation by Fortunato and

Barthélemy in (19) of modularity’s behaviour on a ring-of-cliques, where modularity returns

clusters that contain two or more cliques, instead of returning the individual cliques, under

some conditions. Here we see that clusters that are split by CM unsurprisingly occur in both

11

networks with modularity, but also occur in a noticeable way for CPM-optimization with the

smallest resolution value for the Open Citations network. Finally, we note that this occurs for

CPM-optimization with other resolution values on both networks (Table S5 and Figure S1). The

most extreme cluster fate is of course when it is degraded to singletons, which occurs in modu-

larity clusterings and CPM-based clusterings at lower resolution values; however, the degree to

which this occurs depends on the network and resolution value in a way that does not suggest

any particular pattern (Figure S1).

Clustering with IKC We examine the impact of CM on IKC (with k = 10) on the Open

Citations and CEN networks (Fig. 6). In comparison to Leiden, IKC-clustering results in rela-

tively low node coverage, 23.6% and 3.8% in the case of the Open Citations and CEN networks

respectively. CM treatment of these clusterings also has a small effect on node coverage. We

also see that most clusters are extant and some are split, but none are reduced or degraded.

In summary, the response to CM-processing differed across methods. On the CEN and Open

Citations networks, and for both IKC and Leiden under modularity or CPM, node coverage in a

post-CM clustering did not exceed 68%, either because CM-processing reduces node coverage

substantially from the initial clustering in the case of Leiden with modularity or CPM-clustering

with smaller resolution values or because the initial clustering was conservative and already

had low node coverage. This suggests the possibility that in these real-world networks, only

a fraction of the nodes may be in clusters that are sufficiently well connected and sufficiently

large. In other words, real-world networks may not be fully covered by what we consider

“valid” communities.

Analysis of synthetic networks Given our hypothesis that the large reduction in node cov-

erage that we observe on real-world networks may be the result of them not being universally

covered by well connected true communities, we examined synthetic networks, noting that

12

0.5 0.1 0.01 0.001 0.0001 mod

oc
cen

0

25

50

75

100

0

25

50

75

100

cluster fate

pe
rc

en
t extant

reduced

split

degraded

Figure 5: Cluster Fate for Leiden. CM-processed clusters are classified as extant (unaffected by
CM), reduced (replaced by a single smaller cluster), split (replaced by two or more clusters), or
degraded (replaced entirely by singletons). Top: Cluster Fate for Open Citations (OC); Bottom:
Cluster fate for the CEN. Data are shown for CM treatment of Leiden clusters, under either CPM
for 5 different resolution values or modularity. Cluster counts are expressed as a percentage of
the input clusters.

synthetic networks generated using LFR software (20) assign every node to a non-singleton

ground-truth community. If node coverage after CM-processing of LFR networks were similar

to real-world networks, it would argue against this hypothesis. Examining synthetic networks

also enables us to evaluate the impact of CM-processing on accuracy.

13

3.8

23.6

3.8

20.1

0.0

12.5

25.0

37.5

50.0

62.5

75.0

87.5

100.0

cen oc

pe
rc

en
t n

od
e

co
ve

ra
ge

input_clustering
post_CM

(a) Node coverage

85.9

94

14.1

6

0 00 00.0

12.5

25.0

37.5

50.0

62.5

75.0

87.5

100.0

cen oc

pe
rc

en
ta

ge
 o

f i
np

ut
_c

lu
st

er
in

g

extant
split
reduced
degraded

(b) Cluster Fate

Figure 6: Node coverage (a) and cluster fate (b) for IKC clusters modified by CM on the Open
Citations and CEN. For IKC on these two networks, node coverage is small on both the CEN
and Open Citations, and slightly reduced by CM on the Open Citations network. We also see
that most clusters are extant (unaffected by CM-processing) and some are split (replaced by
two or more smaller clusters), but none are reduced (replaced by a single smaller cluster) or
degraded (replaced by only singletons).

For this experiment, we computed statistics for the Leiden clusterings of the 7 real-world

networks we explored, Open Citations, CEN, and 5 networks from the SNAP collection (21)),

and used them as input to the LFR software (20) (see Materials and Methods). Using this

software, we were not able to build synthetic networks for the CEN and Open Citations with

the number of nodes in the empirical networks; therefore, for these two specific cases, we

constructed the LFR networks to 3M nodes. For some combinations of network and Leiden

clustering, we were unable to produce any synthetic networks, for example, we were unable to

produce LFR networks for the Orkut social network. We produced a collection of 34 LFR net-

works with ground truth communities that had similar empirical statistics as their corresponding

real-world networks (Supplementary Materials Section S3). We clustered each of these 34 LFR

networks using the same clustering method used to provide empirical statistics to LFR.

Results in Figure 7 show node coverage after clustering for both the empirical network and

14

0

50

100

0.5 0.1 0.01 0.001 0.0001

open_citations

modularity

0

50

100

CEN

0

50

100 cit_patents

0

50

100 cit_hepph

0

50

100 wiki_topcats

0

50

100 wiki_talk

pre-CM
Filte

r
post-C

M
0

50

100

pre-CM
Filte

r
post-C

M
pre-CM

Filte
r

post-C
M

pre-CM
Filte

r
post-C

M
pre-CM

Filte
r

post-C
M

pre-CM
Filte

r
post-C

M

orkut

CM Pipeline Stage

No
de

 C
ov

er
ag

e
(%

)

Empirical
LFR

Figure 7: The effect on node-coverage (percentage of nodes in clusters of size at least 11) pro-
duced by the CM processing pipeline on LFR and real-world networks. Each row corresponds
to a real-world network, and each column corresponds to a Leiden clustering (either modularity
or CPM-optimization with the specified resolution value). Within each entry, we show node
coverage for the Leiden clustering as it goes through the CM pipeline; results on the empirical
network are shown in green and results for the LFR network are shown in red. “Pre-CM” in-
dicates the output of the Leiden clustering, “filter” is after removing trees and clusters below
size 11, and “post-CM” is after the entire pipeline (which also removes any final clusters below
size 11). No results are shown for some combinations (specifically, data are not shown for LFR
for any clustering of the Orkut network nor for the wiki topcats and wiki talk networks with
resolution value r = 0.5) due to LFR failing to generate networks for those settings.

its corresponding LFR network. The general trends we observed in previous experiments for OC

and CEN also hold for the five other empirical networks examined here both with respect to node

coverage in Leiden clustering and how CM-processing impacts node coverage. An interesting

trend we see here is that node coverage drops for some CPM clusterings of empirical networks

15

0.5

0.6

0.7

0.8

0.9

1.0
CEN open_citations cit_hepph

mod
0.0001

0.001 0.01 0.1 0.5

0.5

0.6

0.7

0.8

0.9

1.0
cit_patents

mod
0.0001

0.001 0.01 0.1 0.5

wiki_topcats

mod
0.0001

0.001 0.01 0.1 0.5

wiki_talk

No
rm

al
ize

d
m

ut
ua

l i
nf

or
m

at
io

n
(N

M
I)

pre-CM post-CM

0

20

40

60

80

100
CEN open_citations cit_hepph

mod
0.0001

0.001 0.01 0.1 0.5

0

20

40

60

80

100
cit_patents

mod
0.0001

0.001 0.01 0.1 0.5

wiki_topcats

mod
0.0001

0.001 0.01 0.1 0.5

wiki_talk

No
de

 c
ov

er
ag

e
(%

)

LFR ground-truth Original Leiden clustering

0.0

0.2

0.4

0.6

0.8

1.0
CEN open_citations cit_hepph

mod
0.0001

0.001 0.01 0.1 0.5
0.0

0.2

0.4

0.6

0.8

1.0
cit_patents

mod
0.0001

0.001 0.01 0.1 0.5

wiki_topcats

mod
0.0001

0.001 0.01 0.1 0.5

wiki_talk

Networks

Ad
ju

st
ed

 m
ut

ua
l i

nf
or

m
at

io
n

(A
M

I)

0

20

40

60

80

100
CEN open_citations cit_hepph

mod
0.0001

0.001 0.01 0.1 0.5
0

20

40

60

80

100
cit_patents

mod
0.0001

0.001 0.01 0.1 0.5

wiki_topcats

mod
0.0001

0.001 0.01 0.1 0.5

wiki_talk

Networks

Di
sc

on
ne

ct
ed

 c
lu

st
er

s (
%

)

Figure 8: Impact of CM-processing on accuracy of synthetic networks. The left panels show
accuracy measured in terms of NMI and AMI, with respect to the LFR ground-truth communi-
ties. Each condition on the x-axis corresponds to a different LFR network, generated based on
Leiden-modularity or Leiden-CPM with that specific resolution parameter. In total, there are
34 different LFR networks. The right panels show percentage of the LFR ground-truth com-
munities that are small or disconnected. In most conditions, CM improves the accuracy of the
original Leiden clustering, except for some of the conditions when the ground-truth communi-
ties have many (at least 60%) disconnected clusters, or the node coverage by clusters of size at
least 11 is low (at most 70%).

though not for LFR networks after the filtering stage. Since node coverage in this figure is with

respect to clusters of size 11 or larger, any drop in node coverage resulting from filtering is due

only to removing trees. The large drop in node coverage for Leiden with CPM-optimization in

these cases means that CPM-optimization in some conditions produces a large number of tree

clusters. We note this did not occur for resolution value r = 0.5, where clusters tend to be small

but did occur for other resolution values (Supplementary Tables S3 and S4).

Of specific interest is whether clusterings of the LFR networks respond similarly to CM-

16

processing as clusterings of their corresponding empirical networks, as this addresses our hy-

pothesis regarding why CM-processing impacts node coverage in empirical networks. While

node coverage does drop to the same degree for some LFR networks as for the empirical net-

works on which they are based, there are many cases where node coverage drops much more

for the real-world network than for the corresponding LFR network, and no cases where there

is a bigger drop in node coverage for the LFR network than for the real-world network. Thus,

the idea that real-world networks not having universal coverage by valid communities cannot

be ruled out.

We examined the impact of CM-processing on clustering accuracy; results for Normal-

ized Mutual Information (NMI) and Adjusted Mutual Information (AMI) are shown in Fig-

ure 8, and results for the Adjusted Rand Index (ARI) are similar to AMI and are provided

in Supplementary Materials, Figure S11 (22–24). We see that CM-processing improves NMI

accuracy for modularity and also for CPM-optimization when used with small resolution val-

ues. CM-processing tends to be neutral for NMI otherwise, and was only detrimental on two

network:clustering pairs. The impact on AMI accuracy is more variable. For example, CM-

processing reduced AMI accuracy for all wiki talk network:clustering pairs except for CPM-

optimization with r = 0.1 where accuracy was very low and the impact was neutral. CM-

processing also reduced accuracy for CPM-optimization on some network:clustering pairs for

large resolution values.

However, when examining the properties of the ground-truth clusterings of these networks,

we see that the cases where CM-processing produced a noteworthy reduction in accuracy for

NMI or AMI are those where there are many disconnected ground truth clusters, for example

all wiki talk clusters, or where the node coverage by clusters of size at least 11 is small, for

example cit patents at the three largest resolution values and wiki topcats with the two largest

resolution values. However, there are conditions with low node coverage or a large fraction of

17

disconnected clusters where CM-processing is neutral or even beneficial.

The occurrence of disconnected ground-truth clusters in the LFR networks is striking and

problematic, since a basic expectation of a community is that it is connected, if not well-

connected (10). Hence, we assert that it is unreasonable to evaluate accuracy with respect to a

ground-truth set of communities if the communities are not connected. In other words, it does

not make sense to evaluate clustering accuracy for those LFR networks that contain many dis-

connected ground truth communities, including the entire set of LFR networks constructed for

wiki talk invalid, which is one of the conditions where CM-processing reduces AMI accuracy.

The fact that LFR networks had ground truth clusters that were not connected also indicates the

failure of LFR software to reproduce features of the input network:clustering pairs, which by

construction always have 100% of the clusters connected.

It is easy to see why a low node coverage by clusters of size at least 11 could reduce ac-

curacy for CM-processing, since CM automatically removes all small clusters. However, this

property depends on the network:clustering pair, which depends on network features as well

as the clustering methodology. In this study, clustering real-world networks produced a large

fraction of small clusters when we used CPM-optimization with large resolution values; the

conditions where CM-processing reduced AMI accuracy on the LFR networks with low node

coverage by clusters of size at least 11 are drawn from those conditions. We also note that

users typically select the clustering method that produces cluster sizes that match their inter-

est. Therefore, CM-processing will not be beneficial where there is interest in recovering small

communities unless the bound B is replaced by a smaller value.

In interpreting these results, we also note the discrepancy between some empirical statistics

of LFR networks and those of the real-world network:clustering pairs that were used to simulate

the LFR network. Beyond incomplete matching of features, differences such as the frequency of

disconnected clusters and the percentage of clusters that are small make it questionable whether

18

accuracy on LFR networks is suggestive of accuracy on real-world networks.

Discussion In this study, we considered the question of whether clusters produced by com-

munity detection methods are well connected. We use a mild definition to demonstrate that five

different clustering paradigms generate, to varying extents, output clusters that are not well con-

nected. An important implication of these results is that portions of a network may not exhibit

community structure. Further, at parameter settings that maximize node coverage, weakly con-

nected parts of a network may be forced into communities. Related prior work (15, 25) address

whether a graph in general is clusterable, which is a related question.

We developed CM to convert, through partitioning, poorly connected clusters into well con-

nected ones. For flexibility, the function in CM that defines “well connected” can be modified

by users to be more or less stringent. Similarly, we provide a parameter B, tunable by the user,

that specifies the smallest size of a cluster for it to be retained; this too can be modified by the

user to be more or less stringent. At present, CM provides support only for Leiden and IKC, the

most scalable of the methods we tested. CM is being extended to provide support for Infomap

and MCL and concurrently being redesigned for developers to integrate their own clustering

methods into it. CM allows the user to explore cluster quality in the input, as it reveals which

clusters are poorly connected, and, in some cases, finds substructure within clusters. Thus, CM-

processing can be used to evaluate and improve clustering outputs, and interrogate and explore

the community structure within a given network.

Several factors affect how significantly CM-processing changes a given clustering. These

include the network itself, as some networks seem to be more impacted by CM-processing. We

also see that the choice of resolution parameter for Leiden-CPM has an influence on how much

the clustering changes, with generally larger impact for small resolution values.

The findings that LFR networks produce different patterns than empirical networks is per-

19

haps not surprising, but here we consider potential explanations. First, the LFR methodology

assumes that the degree distribution and cluster size distributions follow a power law, however,

it is not clear that this is universal to citation and real-world networks (26–29). Furthermore, we

also observed that the degree distribution and cluster size distributions were imperfectly fit by

LFR software in our study (Supplementary Materials, Figs. S2 and S3). Hence, the assumptions

about node degree and cluster size distributions that govern the LFR model may not result in

adequate simulation of real-world networks.

Another assumption in the LFR methodology is that every node is in a community, which

is one that would benefit from deeper investigation. Intuitively, we posit that the assumption

that every node in a real world community is in a community may only be reasonable if the

communities can be small and/or poorly connected.

We recognize that our perspective on well connected clusters may result in narrow descrip-

tions of communities, perhaps akin to cores of core-periphery structures (4, 30, 31). Addition-

ally, informative weaker links (32) may be lost from communities since CM partitions input

clusters that are poorly connected into sets of well connected clusters. However, such weak

links are not lost from the network being analyzed.

Having developed CM and ascertained its quantitative effects, a direction for our future

work is to evaluate it in the context of specific evaluations that are supported by mixed methods.

More generally, we emphasize leaving the definition, use, and interpretation of well connected

to users.

Materials and Methods

Defining well connected clusters. In (10), Traag et al. proved that every cluster C in a

CPM-optimal clustering of a network (with resolution parameter r) would satisfy the following

20

t(n)

g(n)

h(n)

f(n)

0

5

10

15

20

0 500 1000 1500 2000

Figure 9: Comparison of the lower bounds on edge cut sizes for defining well connected clusters.
Here we compare four functions; t(n) = 0.01(n−1) is Traag’s function, which provides a lower
bound of the cut size for a cluster on n nodes in a CPM-optimal clustering when r = 0.01,
f(n) = log10 n, g(n) = log2 n, and h(n) =

√
n
5

. For n ≥ 1000, Traag’s function provides the
largest lower bound on the edge cut size, and so is the strongest guarantee of the functions we
compare, while f(n) provides the smallest lower bound for all n ≥ 239. However, for n ≤ 238,
f(n) ≥ t(n), so that f(n) provides a stronger guarantee on these small- to moderate-sized
clusters than Traag’s bound.

property: any edge cut X of C splitting the nodes into two sets A and B would have at least

r× |A| × |B| edges. This function is maximized when |A| = |B| and minimized when |A| = 1

and |B| = n− 1, where C has n nodes. Hence in particular, this establishes that the minimum

cut for any cluster with n nodes has size at least r × (n− 1).

We have already observed that this bound (which we refer to as Traag’s bound) is weak

when n is not large and r is very small. For example, when r = 0.01 and n = 50, the bound

only establishes that the minimum edge cut is at least 1, which therefore simply asserts that the

cluster is connected. Hence, we seek lower bounds on the size of the minimum edge cut that

are larger than Traag’s bound of r × (n− 1) for small values of n but grow very slowly, and so

21

do not exceed Traag’s bound for larger n.

In the text, we discussed the bound that requires that for a cluster of n nodes to be well

connected, the size of its min cut must be strictly greater than f(n) = log10 n. We compare

f(n) to Traag’s lower bound when r = 0.01, which we refer to as t(n), as well as two other

functions, g(n) = log2 n and h(n) =
√
n
5

; note that each of f(n), g(n) and h(n) is strictly

positive and increasing, and yet grows more slowly than Traag’s function t(n).

The comparison between these functions in the range of cluster sizes 1 ≤ n ≤ 2000 is

shown in Figure 9. As desired, for large enough n, Traag’s function t(n) dominates the other

functions, thus imposing a much stronger guarantee on the minimum cut size for the cluster.

We also note that f(n) < g(n) for all n > 1, but that the relationship between f(n), h(n), and

t(n) depends on n. For large n, however, f(n) is less than all the other functions, making it the

most slowly growing function.

Based on this comparison, we used f(n) to define when a cluster of n nodes is well con-

nected: the min cut size is strictly greater than log10(n); otherwise we say that the cluster is

poorly connected.

Note that if we had picked g(n) instead, we would have considered more clusters poorly

connected, since f(n) < g(n) for all n. Similarly, picking h(n) would have generally been

more stringent a requirement (at least for all but very small values of n), and so would have

ruled more clusters as being poorly connected. Thus, f(n) represents a very modest constraint

on the size of the min cut for a cluster, in order for it to qualify as being well connected.

The Connectivity Modifier (CM) Pipeline To remediate poorly-connected clusters, we de-

veloped a modular pipeline that we now describe (Fig. 2). By design, this pipeline is guaranteed

to return a clustering where each cluster is well connected according to the function f(n) and

has size at least B. The values of f(n) and B used in this study are set as default but can be

22

easily modified by a user. Note that if an input cluster meets these two criteria, it will be present

in the output clustering. Furthermore, every cluster in the output will either be one of the input

clusters or will be a subset of one of the input clusters.

The CM pipeline requires the user to specify values for three algorithmic parameters:

• B, the minimum allowed size of any “valid” vertex community (default B = 11)

• f(n), so that a cluster is well connected only if its min cut size exceeds f(n) (default:

f(n) = log10 n)

• A clustering method, presently selected from Leiden optimizing CPM, Leiden optimizing

modularity, or the Iterative k-core (IKC) method with k = 10. Support for additional

methods is in active development.

The input to the CM pipeline is a network G with N nodes and the algorithmic parameters as

specified. The pipeline then operates in four stages:

• Stage 1: A clustering is generated from the input network G.

• Stage 2: The clustering is filtered to remove clusters below size B and all trees, which are

not well-connected when using f(n) = log10 n

• Stage 3: The Connectivity Modifier (CM) is applied to each cluster that remains. First,

all nodes of degree at most f(n) are removed (where n is the number of nodes in the

cluster), until there are no low degree nodes remaining. Then, for each remaining cluster,

a min cut is calculated using VieCut (33), and if it is not greater than f(n) in size then the

min cut is removed, thus splitting the cluster into two components. These components

are then re-clustered using the selected clustering method, and the process repeats until

all clusters are well-connected.

• Stage 4: Any resultant clusters below size B are removed.

23

Additional details for the Connectivity Modifier The Connectivity Modifier was developed

using Python 3.10. The original implementation of VieCut (33) in C++17 was wrapped into a

Python package using PyBind11. We use VieCut to find minimum edge cuts, using the NOI

algorithm (34). CM is under active development; this study used CM v3.3 of CM, available at

https://github.com/illinois-or-research-analytics/cm_pipeline (16).

Additional details for IKC Due to memory constraints, IKC fails to run with the connectivity

modifier on the entirety of the OpenCitations network. To solve this, we modified IKC to run

in memory as an imported Python module rather than as a separate executable. Moreover, we

split the initial IKC clustering of OpenCitations into separate clusters, and the Connectivity

Modifier was then run on the largest clusters independently (see Supplementary Section S2 for

full details).

Data A custom-implemented Extract-Transform-Load (ETL) process was designed to pro-

cess the publicly available Open Citations dataset, downloaded in Aug 2022, and load it into

a PostgreSQL table. The resultant network contained 75,025,194 nodes and 1,363,605,603

edges. The CEN is a citation network constructed from the literature on exosome research.

From the SNAP repository, we downloaded cit hepph, an Arxiv High Energy Physics paper

citation network; cit patents, a citation network among US patents; orkut, a social media net-

work; wiki talk, a network containing users and discussion from the inception of Wikipedia

until January 2008; and wiki topcats, a web graph of Wikimedia hyperlinks. Before clustering,

all networks were processed to remove self-loops as well as duplicate and parallel edges.

LFR (synthetic) networks To create simulated networks with ground truth communities,

while attempting to emulate the properties of each empirical network and its corresponding

Leiden clustering, we used the LFR software from (20). The generative model of the LFR

24

https://github.com/illinois-or-research-analytics/cm_pipeline

network nodes edges avg deg ref
Open Citations 75,025,194 1,363,605,603 36.35 (17)
CEN 13,989,436 92,051,051 13.16 (35)
cit hepph 34,546 420,877 24.37 (36)
cit patents 3,774,768 16,518,947 8.75 (36)
orkut 3,072,441 117,185,083 76.28 (37)
wiki talk 2,394,385 4,659,565 3.89 (38)
wiki topcats 1,791,489 25,444,207 28.41 (39)

Table 1: Summary statistics for networks used in this study. Average degree is the average of
the node degrees across the network.

graphs assume that the node degree and the community size distributions are power-law distri-

butions (40). The software for generating LFR benchmark graphs (41) takes the following eight

parameters as input:

• Network properties: Number of nodes N , average and maximum node degrees (k and

kmax respectively), and negative exponent for degree sequence (τ1) that is assumed to be

a power-law.

• Community properties: Maximum and minimum community sizes (cmax and cmin), and

negative exponent for the community size distribution (τ2), also modeled as a power-law.

• Mixing parameter µ, that is the ratio between the degree of a node outside its community

and its total degree, averaged over all nodes in the network. Lower µ values suggest that a

network consists of well-separated communities, as nodes are mostly connected to other

nodes inside their communities, rather than outside of it.

Parameter Estimation. To emulate the empirical networks using LFR graphs, we estimated

all eight parameters described above for a given pair of network G and a clustering C. Com-

puting N, k, kmax, cmin and cmax is straightforward using networkX (42, 43). To estimate µ, we

perform a single iteration over all edges of the network, and for each edge, if the nodes on the

25

two sides of it were in different communities, that edge contributes to the ratio µ of these two

nodes. The total µ of the network:clustering pair is the average µ across all the nodes.

To estimate τ1 and τ2, we fit a power-law distribution to the node degree sequence and the

community size distribution, using the approach from (44) that is implemented in the power-law

Python package (45). Note that the power-law property may hold for the tail of the degree or

community size sequence and not the whole distributions. Therefore, following (44), we esti-

mate xmin, the minimum value for which the power-law property holds as well as the exponent

α for the tail of the distribution.

Generating LFR networks. After computing these parameters based on the Leiden clus-

terings of the empirical networks using both modulatiry and CPM with a range of resolution

parameters, we simulated LFR networks using the software from (20), producing empirical

statistics reported in Supplementary Tables S7 and S8.

For networks with more than 10 million nodes, i.e., Open Citations and the CEN, we limited

the number of vertices to 3 million, due to scalability limitations of the LFR benchmark graph

generator (46), while preserving the edge density reflected by average degree, and the mixing

parameter. The numbers of nodes of the other LFR graphs exactly match the number of nodes

in the corresponding empirical network. In some cases, due to the inherent limitations of the

LFR graph generator, we had to modify the ranges of the community sizes, i.e., increase cmin

and decrease cmax, to generate the network. These values are available with the datasets.

As shown in the statistics reported in Supplementary Tables S7 and S8, the average node

degree, the mixing parameter, and the exponents for the degree and community size distribu-

tions are in all cases very well-preserved. Further details about the pipeline for producing LFR

graphs and the statistics of the graphs are provided in Supplementary Materials Section 3. We

calculated NMI, AMI, and ARI using the Python Scikit-Learn package (47). Other software

26

used includes Leiden and IKC (48, 49).

References

1. M. E. Newman, M. Girvan, Finding and evaluating community structure in networks. Phys-

ical review E 69, 026113 (2004).

2. P. J. Mucha, T. Richardson, K. Macon, M. A. Porter, J.-P. Onnela, Community structure in

time-dependent, multiscale, and multiplex networks. Science 328, 876–878 (2010).

3. S. Fortunato, M. E. J. Newman, 20 years of network community detection. Nature Physics

18, 848–850 (2022).

4. E. Wedell, M. Park, D. Korobskiy, T. Warnow, G. Chacko, Center-periphery structure in

research communities. Quantitative Science Studies 3, 289–314 (2022).

5. K. W. Boyack, R. Klavans, Creation of a highly detailed, dynamic, global model and map

of science. Journal of the Association for Information Science and Technology 65, 670–685

(2013).

6. L. Waltman, N. J. van Eck, A new methodology for constructing a publication-level clas-

sification system of science. Journal of the American Society for Information Science and

Technology 63, 2378–2392 (2012).

7. K. W. Boyack, D. Newman, R. J. Duhon, R. Klavans, M. Patek, J. R. Biberstine, B. Schi-

jvenaars, A. Skupin, N. Ma, K. Börner, Clustering more than two million biomedical pub-

lications: Comparing the accuracies of nine text-based similarity approaches. PLoS ONE

6, e18029 (2011).

27

8. M. Coscia, F. Giannotti, D. Pedreschi, A classification for community discovery methods

in complex networks. Statistical Analysis and Data Mining 4, 512–546 (2011).

9. F. Bonchi, D. Garcı́a-Soriano, A. Miyauchi, C. E. Tsourakakis, Finding densest k-

connected subgraphs. Discrete Applied Mathematics 305, 34–47 (2021).

10. V. A. Traag, L. Waltman, N. J. Van Eck, From Louvain to Leiden: guaranteeing well-

connected communities. Scientific reports 9, 1–12 (2019).

11. V. D. Blondel, J.-L. Guillaume, R. Lambiotte, E. Lefebvre, Fast unfolding of communities

in large networks. Journal of Statistical Mechanics: Theory and Experiment 2008, P10008

(2008).

12. V. A. Traag, P. V. Dooren, Y. Nesterov, Narrow scope for resolution-limit-free community

detection. Physical Review E 84 (2011).

13. M. Rosvall, C. T. Bergstrom, Maps of random walks on complex networks reveal commu-

nity structure. Proceedings of the National Academy of Sciences 105, 1118–1123 (2008).

14. S. V. Dongen, Graph clustering via a discrete uncoupling process. SIAM Journal on Matrix

Analysis and Applications 30, 121–141 (2008).

15. P. Miasnikof, A. Y. Shestopaloff, A. Raigorodskii, Statistical power, accuracy, reproducibil-

ity and robustness of a graph clusterability test. International Journal of Data Science and

Analytics 15, 379–390 (2023).

16. V. Ramavarapu, F. Ayres, M. Park, V. K. Pailodi, G. Chacko, T. Warnow,

Connectivity modifier (2023). Available online at https://github.com/

illinois-or-research-analytics/cm_pipeline.

28

https://github.com/illinois-or-research-analytics/cm_pipeline
https://github.com/illinois-or-research-analytics/cm_pipeline

17. S. Peroni, D. Shotton, OpenCitations, an infrastructure organization for open scholarship.

Quantitative Science Studies 1, 428–444 (2020).

18. B. Liu, M. Park, Connectivity modifier, https://github.com/RuneBlaze/

connectivity-modifier (2022).

19. S. Fortunato, M. Barthelemy, Resolution limit in community detection. Proceedings of the

National Academy of Sciences 104, 36–41 (2007).

20. A. Lancichinetti, S. Fortunato, F. Radicchi, Benchmark graphs for testing community de-

tection algorithms. Physical review E 78, 046110 (2008).

21. J. Leskovec, A. Krevl, SNAP Datasets: Stanford large network dataset collection (2014).

Http://snap.stanford.edu/data.

22. L. Danon, A. Diaz-Guilera, J. Duch, A. Arenas, Comparing community structure identifi-

cation. Journal of statistical mechanics: Theory and experiment 2005, P09008 (2005).

23. N. X. Vinh, J. Epps, J. Bailey, Proceedings of the 26th annual international conference on

machine learning (2009), pp. 1073–1080.

24. L. Hubert, P. Arabie, Comparing partitions. Journal of classification 2, 193–218 (1985).

25. C. Gao, J. Lafferty, Testing for global network structure using small subgraph statistics

(2017). ArXiv:1710.00862.

26. F. Radicchi, S. Fortunato, C. Castellano, Universality of citation distributions: Toward an

objective measure of scientific impact. Proceedings of the National Academy of Sciences

105, 17268–17272 (2008).

29

https://github.com/RuneBlaze/connectivity-modifier
https://github.com/RuneBlaze/connectivity-modifier

27. M. J. Stringer, M. Sales-Pardo, L. A. N. Amaral, Statistical validation of a global model

for the distribution of the ultimate number of citations accrued by papers published in a

scientific journal. Journal of the American Society for Information Science and Technology

61, 1377–1385 (2010).

28. I. Artico, I. Smolyarenko, V. Vinciotti, E. C. Wit, How rare are power-law networks really?

Proceedings of the Royal Society A 476, 20190742 (2020).

29. M. Brzezinski, Power laws in citation distributions: evidence from Scopus. Scientometrics

103, 213–228 (2015).

30. R. Breiger, Explorations in Structural Analysis (RLE Social Theory) (Routledge, 2014).

31. P. Rombach, M. A. Porter, J. H. Fowler, P. J. Mucha, Core-periphery structure in networks

(revisited). SIAM Review 59, 619–646 (2017).

32. M. S. Granovetter, The strength of weak ties. American Journal of Sociology 78, 1360–

1380 (1973).

33. M. Henzinger, A. Noe, C. Schulz, D. Strash, Practical minimum cut algorithms. ACM

Journal of Experimental Algorithmics 23 (2018).

34. H. Nagamochi, T. Ono, T. Ibaraki, Implementing an efficient minimum capacity cut algo-

rithm. Math. Program. 67, 325–341 (1994).

35. A. Jakatdar, B. Liu, T. Warnow, G. Chacko, AOC: Assembling overlapping communities.

Quantitative Science Studies 3, 1079–1096 (2022).

36. J. Leskovec, J. Kleinberg, C. Faloutsos, Proceedings of the eleventh ACM SIGKDD inter-

national conference on Knowledge discovery in data mining (ACM, 2005), pp. 177–187.

30

37. J. Yang, J. Leskovec, Defining and evaluating network communities based on ground-truth.

Knowledge and Information Systems 42, 181–213 (2013).

38. J. Leskovec, D. Huttenlocher, J. Kleinberg, Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems (ACM, 2010), pp. 1361–1370. https://doi.

org/10.1145/1753326.1753532.

39. H. Yin, A. R. Benson, J. Leskovec, D. F. Gleich, Proceedings of the 23rd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining (ACM, 2017), pp.

555–564.

40. R. Albert, A.-L. Barabási, Statistical mechanics of complex networks. Reviews of modern

physics 74, 47 (2002).

41. S. Fortunato, Resources (2023). https://www.santofortunato.net/

resources.

42. A. Hagberg, P. Swart, D. S Chult, Exploring network structure, dynamics, and function

using networkx, Tech. rep., Los Alamos National Laboratory (LANL), Los Alamos, NM

(United States) (2008).

43. Y. Tabatabaee, Emulating real networks using LFR graphs (2023). https://github.

com/ytabatabaee/emulate-real-nets.

44. A. Clauset, C. R. Shalizi, M. E. Newman, Power-law distributions in empirical data. SIAM

review 51, 661–703 (2009).

45. J. Alstott, E. Bullmore, D. Plenz, powerlaw: a python package for analysis of heavy-tailed

distributions. PloS one 9, e85777 (2014).

31

https://doi.org/10.1145/1753326.1753532
https://doi.org/10.1145/1753326.1753532
https://www.santofortunato.net/resources
https://www.santofortunato.net/resources
https://github.com/ytabatabaee/emulate-real-nets
https://github.com/ytabatabaee/emulate-real-nets

46. G. M. Slota, J. W. Berry, S. D. Hammond, S. L. Olivier, C. A. Phillips, S. Rajamanickam,

Proceedings of the International Conference for High Performance Computing, Network-

ing, Storage and Analysis (2019), pp. 1–14.

47. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,

P. Prettenhofer, R. Weiss, V. Dubourg, et al., Scikit-learn: Machine learning in Python. the

Journal of Machine Learning Research 12, 2825–2830 (2011).

48. V. Traag, Leiden algorithm: leidenalg, https://github.com/vtraag/

leidenalg (2019).

49. E. Wedell, M. Park, Iterative k-core software (2021). https://github.com/

chackoge/ERNIE_Plus/blob/master/Illinois/clustering/eleanor/

code/IKC.py.

Acknowledgements: The authors thank Nathan Bryans, Christine Ballard, and Bryan Barker

from Oracle Research for their assistance in setting up and using the Oracle Cloud Infrastruc-

ture,

Funding: This work was supported in part by Insper-Illinois Collaboration and by a Research

Award to TW from Oracle Research.

Author Contributions GC and TW conceived the research; GC, TW, and YT designed the

analyses. VR, FA, MP, BL, YT, VP, DK, and RR developed software to support analyses. MP,

YT, GC, VR, VP conducted the analyses. GC, TW, YT, and MP interpreted the data and wrote

the manuscript.

Competing Interests The authors declare that they have no competing financial interests.

Data and materials availability: Additional data and materials are available online.

32

https://github.com/vtraag/leidenalg
https://github.com/vtraag/leidenalg
https://github.com/chackoge/ERNIE_Plus/blob/master/Illinois/clustering/eleanor/code/IKC.py
https://github.com/chackoge/ERNIE_Plus/blob/master/Illinois/clustering/eleanor/code/IKC.py
https://github.com/chackoge/ERNIE_Plus/blob/master/Illinois/clustering/eleanor/code/IKC.py

Supplementary Materials for “Well-Connected Communities in

Real-World and Synthetic Networks”

Minhyuk Park∗1, Yasamin Tabatabaee*1, Vikram Ramavarapu*1, Baqiao Liu1, Vidya
Kamath Pailodi1, Rajiv Ramachandran1, Dmitriy Korobskiy2, Fabio Ayres3, George

Chacko†1,4, and Tandy Warnow‡1

1Department of Computer Science, University of Illinois Urbana-Champaign, Urbana, IL
61801, USA

2NTT DATA, McLean, VA 22102, USA
3Insper Institute, São Paulo, Brazil

4Office of Research, Grainger College of Engineering, University of Illinois
Urbana-Champaign, Urbana, IL 61801, USA

Contents

S1 Additional Results 3

S2 Connectivity Modifier Pipeline 9

S3 Experiments on LFR Graphs 10
S3.1 Emulating Real World Networks with LFR Graphs . 10
S3.2 LFR Accuracy Experiments . 10
S3.3 Additional Results for Experiments with Synthetic Networks 15

List of Tables

S1 Summary Statistics for all networks and methods. 3
S2 Summary Statistics for all networks and methods (cont.). 4
S3 Table of tree cluster counts (a) . 5
S4 Table of tree cluster counts (b) . 6
S5 Split Cluster Fates for Leiden-CPM . 7
S6 Extant Cluster counts for IKC . 7
S7 Properties of the empirical networks and their LFR model graphs for CPM. 11
S8 Properties of the empirical networks and their LFR model graphs for modularity. 12
S9 Percentage of LFR ground-truth clusters that are disconnected 12

List of Figures

S1 Cluster Fate for Leiden Clusters . 8

∗Minhyuk Park, Yasamin Tabatabaee, and Vikram Ramavarapu contributed equally
†chackoge@illinois.edu
‡warnow@illinois.edu

1

S2 Comparison between the degree distribution of empirical and LFR networks using CPM with
r = 0.01. 13

S3 Cluster size distribution for all networks. 14
S4 Impact of CM-processing on cluster size distributions for OC 16
S5 Impact of CM-processing on cluster size distributions of Leiden clusterings of empirical and

LFR networks for the CEN network. 17
S6 Impact of CM-processing on cluster size distributions of Leiden clusterings of empirical and

LFR networks for the cit patents network. 18
S7 Impact of CM-processing on cluster size distributions of Leiden clusterings of empirical and

LFR networks for the cit hepph network. 19
S8 Impact of CM-processing on cluster size distributions of Leiden clusterings of empirical and

LFR networks for the wiki topcats network. 20
S9 Impact of CM-processing on cluster size distributions of Leiden clusterings of empirical and

LFR networks for the wiki talk network. 21
S10 Impact of CM-processing on cluster size distributions of Leiden clusterings of the empirical

Orkut network. 22
S11 Comparison between ARI (Adjusted Rand Index) accuracy of pre-CM and post-CM clusterings

of synthetic networks . 23

2

S1 Additional Results

Table S1: Overview of all networks and methods analyzed with cluster counts (clus count), node coverage (nc, the
percentage of nodes in clusters of size at least 11), and min, median, and max cluster sizes.

network method parameter clus count nc min median max
oc leiden 0.5 20966119 6.0 2 2 192
oc leiden 0.1 8642175 43.8 2 5 882
oc leiden 0.01 2134603 88.9 2 15 3729
oc leiden 0.001 839902 90.5 2 3 21385
oc leiden 0.0001 561116 91.9 2 2 125017
oc leiden modularity 184257 99.4 2 2 9922297
oc ikc 10 2569 23.6 11 40 6650349
cen leiden 0.5 433761 1.0 2 2 70
cen leiden 0.1 517669 24.0 2 11 320
cen leiden 0.01 280544 76.6 2 28 3236
cen leiden 0.001 66470 84.5 2 97 13025
cen leiden 0.0001 11779 90.5 2 377 70138
cen leiden modularity 253 100.0 2 28 1312837
cen ikc 10 128 3.8 14 79 214877
cen infomap default 187 100.0 2 103 2314354
cit hepph leiden 0.5 7569 16.3 2 3 55
cit hepph leiden 0.1 3050 63.2 2 6 169
cit hepph leiden 0.01 810 91.5 2 9 744
cit hepph leiden 0.001 366 94.3 2 3 3436
cit hepph leiden 0.0001 284 95.8 2 2 20000
cit hepph leiden modularity 82 99.5 2 2 4031
cit hepph ikc 10 28 20.1 14 59.5 1530
cit hepph infomap default 68 99.6 2 2 13027
cit hepph mcl 2.0 3036 69.0 2 4 887
cit patents leiden 0.5 1143221 1.1 2 2 116
cit patents leiden 0.1 556688 26.6 2 5 330
cit patents leiden 0.01 134380 95.5 2 19 804
cit patents leiden 0.001 29463 98.7 2 63 3268
cit patents leiden 0.0001 9125 99.3 2 4 20000
cit patents leiden modularity 3708 99.7 2 2 198537
cit patents ikc 10 582 2.0 15 35 23468
cit patents infomap default 3902 99.7 2 2 245582
orkut leiden 0.5 617430 30.2 2 2 217
orkut leiden 0.1 232145 64.8 2 6 1444
orkut leiden 0.01 47094 95.5 2 21 12016
orkut leiden 0.001 11269 96.1 2 44 46062
orkut leiden 0.0001 11348 94.1 2 2 190195
orkut leiden modularity 36 100.0 3 22572.5 800146
orkut ikc 10 758 43.7 11 29 386103
orkut infomap default 20 100.0 8 26660 1417010
wiki talk leiden 0.5 47808 0.1 2 2 133
wiki talk leiden 0.1 48481 0.7 2 4 1141
wiki talk leiden 0.01 31983 31.9 2 11 200
wiki talk leiden 0.001 16035 79.3 2 48 1205
wiki talk leiden 0.0001 7315 97.5 2 167 13635
wiki talk leiden modularity 2739 99.8 2 2 225817
wiki talk ikc NA NA NA NA NA NA
wiki topcats leiden 0.5 455139 2.2 2 2 89
wiki topcats leiden 0.1 240673 29.3 2 5 523
wiki topcats leiden 0.01 58343 91.4 2 17 2547
wiki topcats leiden 0.001 20257 93.3 2 3 18024
wiki topcats leiden 0.0001 13269 94.5 2 2 125725
wiki topcats leiden modularity 27 100.0 155 45467 273395
wiki topcats ikc 10 170 6.8 11 28 45613
wiki talk infomap default 22191 98.6 2 17 53773

3

Table S2: Overview of all networks and methods analyzed with cluster counts (cc) and node coverage (nc) of all
clusters with size at least 11 (> 10), of all non-singleton clusters at most size 10 (> 1, <= 10), and of all singleton
clusters (= 1). The number of nodes and node coverage of all non-singleton clusters are at the very end of each row.

network method parameter cc (> 10) cc (> 1, <= 10) cc (= 1) nc (> 10) nc (> 1, <= 10) nc (= 1) num nodes (> 1) nc (> 1)
cen ikc 10 128 0 13454271 3.8 0 96.2 535165 3.8
wiki topcats ikc 10 170 0 1669262 6.8 0 93.2 122227 6.8
cit hepph ikc 10 28 0 27611 20.1 0 79.9 6935 20.1
cit patents ikc 10 582 0 3699025 2 0 98 75743 2
orkut ikc 10 758 0 1729355 43.7 0 56.3 1343086 43.7
oc ikc 10 2569 0 57301796 23.6 0 76.4 17723398 23.6
cit hepph mcl 2.0 612 2424 862 69 28.5 2.5 33684 97.5
cen infomap default 130 57 0 100 0 0 13989436 100
wiki talk infomap default 14491 7700 35 98.6 1.4 0 2394350 100
wiki topcats infomap default 5676 3161 1 98.9 1.1 0 1791488 100
cit hepph infomap default 8 60 0 99.6 0.4 0 34546 100
cit patents infomap default 297 3605 0 99.7 0.3 0 3774768 100
orkut infomap default 19 1 0 100 0 0 3072441 100
cen leiden 0.0001 11327 452 1323426 90.5 0 9.5 12666010 90.5
cen leiden 0.001 65915 555 2165097 84.5 0 15.5 11824339 84.5
cen leiden 0.01 275807 4737 3238339 76.6 0.3 23.1 10751097 76.9
cen leiden 0.1 273971 243698 8332294 24 16.5 59.6 5657142 40.4
cen leiden 0.5 8448 425313 12701688 1 8.2 90.8 1287748 9.2
cen leiden modularity 187 66 0 100 0 0 13989436 100
wiki talk leiden 0.0001 4488 2827 52664 97.5 0.3 2.2 2341721 97.8
wiki talk leiden 0.001 9622 6413 479532 79.3 0.6 20 1914853 80
wiki talk leiden 0.01 16278 15705 1585195 31.9 1.9 66.2 809190 33.8
wiki talk leiden 0.1 1403 47078 2145665 0.7 9.7 89.6 248720 10.4
wiki talk leiden 0.5 60 47748 2292833 0.1 4.2 95.8 101552 4.2
wiki talk leiden modularity 166 2573 0 99.8 0.2 0 2394385 100
wiki topcats leiden 0.0001 1148 12121 64237 94.5 1.9 3.6 1727252 96.4
wiki topcats leiden 0.001 8014 12243 87381 93.3 1.9 4.9 1704108 95.1
wiki topcats leiden 0.01 44040 14303 96200 91.4 3.2 5.4 1695289 94.6
wiki topcats leiden 0.1 27734 212939 172523 29.3 61.1 9.6 1618966 90.4
wiki topcats leiden 0.5 2666 452473 575060 2.2 65.7 32.1 1216429 67.9
wiki topcats leiden modularity 27 0 0 100 0 0 1791489 100
cit hepph leiden 0.0001 14 270 630 95.8 2.3 1.8 33916 98.2
cit hepph leiden 0.001 63 303 1029 94.3 2.7 3 33517 97
cit hepph leiden 0.01 380 430 1370 91.5 4.6 4 33176 96
cit hepph leiden 0.1 821 2229 2094 63.2 30.7 6.1 32452 93.9
cit hepph leiden 0.5 346 7223 5187 16.3 68.7 15 29359 85
cit hepph leiden modularity 18 64 0 99.5 0.5 0 34546 100
cit patents leiden 0.0001 3238 5887 7621 99.3 0.5 0.2 3767147 99.8
cit patents leiden 0.001 21596 7867 21815 98.7 0.7 0.6 3752953 99.4
cit patents leiden 0.01 114308 20072 64155 95.5 2.8 1.7 3710613 98.3
cit patents leiden 0.1 58858 497830 123020 26.6 70.2 3.3 3651748 96.7
cit patents leiden 0.5 2653 1140568 1049310 1.1 71.1 27.8 2725458 72.2
cit patents leiden modularity 94 3614 0 99.7 0.3 0 3774768 100
orkut leiden 0.0001 691 10657 153956 94.1 0.9 5 2918485 95
orkut leiden 0.001 6279 4990 106634 96.1 0.4 3.5 2965807 96.5
orkut leiden 0.01 41535 5559 115873 95.5 0.7 3.8 2956568 96.2
orkut leiden 0.1 59555 172590 147860 64.8 30.4 4.8 2924581 95.2
orkut leiden 0.5 45170 572260 347743 30.2 58.5 11.3 2724698 88.7
orkut leiden modularity 34 2 0 100 0 0 3072441 100
oc leiden 0.0001 38701 522415 4697754 91.9 1.8 6.3 70327440 93.7
oc leiden 0.001 231899 608003 5487615 90.5 2.1 7.3 69537579 92.7
oc leiden 0.01 1361462 773141 5721905 88.9 3.4 7.6 69303289 92.4
oc leiden 0.1 1311357 7330818 5413061 43.8 49 7.2 69612133 92.8
oc leiden 0.5 297230 20668889 15583737 6 73.2 20.8 59441457 79.2
oc leiden modularity 2184 182073 0 99.4 0.6 0 75025194 100

4

Table S3: Table of Tree Cluster counts (a). The count of clusters of size at least 11 is provided for trees, stars
(a type of tree), and non-tree clusters for all seven networks clustered with Leiden (CPM at various resolutions or
modularity). The total number of clusters of size at least 11 is the sum of these three types

Network res type N
1 cen 0.0001 non tree 9520
2 cen 0.0001 star 1186
3 cen 0.0001 tree 621
4 cen 0.001 non tree 43083
5 cen 0.001 star 18064
6 cen 0.001 tree 4768
7 cen 0.01 non tree 64566
8 cen 0.01 star 205229
9 cen 0.01 tree 6012
10 cen 0.1 non tree 18576
11 cen 0.1 star 255395
12 cen 0.5 non tree 8448
13 cen mod non tree 48
14 cen mod tree 8
15 cen mod star 131
16 cit hepph 0.0001 non tree 14
17 cit hepph 0.001 non tree 63
18 cit hepph 0.01 non tree 379
19 cit hepph 0.01 tree 1
20 cit hepph 0.1 non tree 820
21 cit hepph 0.1 star 1
22 cit hepph 0.5 non tree 346
23 cit hepph mod non tree 18
24 cit patents 0.0001 non tree 3024
25 cit patents 0.0001 tree 178
26 cit patents 0.0001 star 36
27 cit patents 0.001 non tree 20608
28 cit patents 0.001 tree 939
29 cit patents 0.001 star 49
30 cit patents 0.01 non tree 91410
31 cit patents 0.01 star 415
32 cit patents 0.01 tree 22483
33 cit patents 0.1 non tree 58543
34 cit patents 0.1 star 315
35 cit patents 0.5 non tree 2653
36 cit patents mod non tree 75
37 cit patents mod tree 9
38 cit patents mod star 10
39 oc 0.0001 non tree 33705
40 oc 0.0001 tree 3519
41 oc 0.0001 star 1477
42 oc 0.001 non tree 207713
43 oc 0.001 star 1499
44 oc 0.001 tree 22687
45 oc 0.01 non tree 1033761
46 oc 0.01 star 8591
47 oc 0.01 tree 319110
48 oc 0.1 non tree 1297088
49 oc 0.1 star 14268
50 oc 0.1 tree 1
51 oc 0.5 non tree 297230
52 oc mod non tree 912
53 oc mod star 508
54 oc mod tree 764

5

Table S4: Table of Tree Cluster counts (b). The count of clusters of size at least 11 is provided for trees, stars
(a type of tree), and non-tree clusters for all seven networks clustered with Leiden (CPM at various resolutions or
modularity). The total number of clusters of size at least 11 is the sum of these three types.

gp res type N
1 orkut 0.0001 non tree 677
2 orkut 0.0001 tree 13
3 orkut 0.0001 star 1
4 orkut 0.001 non tree 6199
5 orkut 0.001 tree 79
6 orkut 0.001 star 1
7 orkut 0.01 non tree 37470
8 orkut 0.01 star 13
9 orkut 0.01 tree 4052
10 orkut 0.1 non tree 59372
11 orkut 0.1 star 183
12 orkut 0.5 non tree 45170
13 orkut mod non tree 34
14 wiki talk 0.0001 non tree 3104
15 wiki talk 0.0001 star 128
16 wiki talk 0.0001 tree 1256
17 wiki talk 0.001 non tree 3760
18 wiki talk 0.001 star 1797
19 wiki talk 0.001 tree 4065
20 wiki talk 0.01 non tree 2579
21 wiki talk 0.01 star 7850
22 wiki talk 0.01 tree 5849
23 wiki talk 0.1 non tree 133
24 wiki talk 0.1 star 1270
25 wiki talk 0.5 non tree 60
26 wiki talk mod non tree 149
27 wiki talk mod tree 7
28 wiki talk mod star 10
29 wiki topcats 0.0001 non tree 1088
30 wiki topcats 0.0001 tree 47
31 wiki topcats 0.0001 star 13
32 wiki topcats 0.001 non tree 7611
33 wiki topcats 0.001 tree 311
34 wiki topcats 0.001 star 92
35 wiki topcats 0.01 non tree 36854
36 wiki topcats 0.01 star 891
37 wiki topcats 0.01 tree 6295
38 wiki topcats 0.1 non tree 25364
39 wiki topcats 0.1 star 2370
40 wiki topcats 0.5 non tree 2666
41 wiki topcats mod non tree 27

6

Table S5: Split Cluster Fates. For all seven networks (rows) clustered with Leiden with CPM at various resolutions
or modularity (columns), the maximum number subclusters for a cluster is shown; by definition, the minimum number
is 2. The highest number of subclusters is seen for modularity clustering and low resolution values of CPM. Results
not shown are because there are no split clusters.

gp 0.5 0.1 0.01 0.001 0.0001 mod
1 oc 2 3 5 149
2 cen 2 2 21
3 cit patents 3 5 210
4 cit hepph 2 2 7
5 orkut 2 4 61
6 wiki talk 8
7 wiki topcats 2 5 15

Table S6: Extant Cluster counts for IKC clusterings. The fraction of clusters that are extant, i.e., not modified by
CM, is expressed as a percentage of total clusters. No results are shown for wiki talk because IKC did not return
any clusters for that network.

not extant extant perc extant
CEN 18 110 85.9
OC 154 2415 94.0
cit hepph 2 26 92.9
cit patents 38 544 93.5
wiki topcats 14 156 91.8
orkut 91 667 88.0

7

0.5 0.1 0.01 0.001 0.0001 mod

oc
cen

cit_patents
cit_hepph

orkut
w

iki_talk
w

iki_topcats

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

cluster fate

pe
rc

en
t extant

reduced

split

degraded

Figure S1: Cluster Fate for Leiden clusters on 7 different networks. The fate of Leiden clusters from seven
different networks as extant (not modified by CM), reduced (replaced by a smaller cluster), split (replaced by two or
more smaller clusters), or degraded (replaced entirely by singletons) is indicated. Rows correspond to networks and
columns correspond to clustering approach. Data are shown for CM treatment of Leiden clusters, under either CPM
for 5 different resolution values or modularity. As resolution is decreased, the number of extant clusters decreases; the
number of clusters that are reduced in size increases then decreases; the number of clusters that are split generally
increases with the exception of modularity, which varies according to network; and the number of clusters that are
degraded to singletons increases and then decreases.

8

S2 Connectivity Modifier Pipeline

Preprocessing an input network

We remove duplicate/parallel edges and self-loops from the networks, using the cleanup el.R script with
the following command:

Rscript cleanup_el.R <original_network.tsv > <cleaned_network.tsv >

This step is now included as Stage 1 in the pipeline.

CM Pipeline

The cleaned input network G is then processed in a pipeline that has the following stages:

• Clustering: Clustering G, using either the Leiden algorithm (in default mode with two iterations) or
Iterative K-core Clustering (IKC) method, with the following commands respectively:

leidenalg.find_partition(net , leidenalg.CPMVertexPartition , resolution_parameter=r)

IKC.py -e <cleaned_network.tsv > -k 10 -o <output file >

We used the Python version of Leiden (leidenalg v0.8.2) and IKC (v1.0.0). For the Open Citations
network, we ran CM on the IKC clustering as follows. Each cluster of size greater than 100,000 nodes
was run in a separate CM analysis until completion or failure. The remaining clusters were run in
a single CM analysis together. The output clusterings from all of the individual CM runs were then
combined to make the final output clustering. Two of the CM runs, originating from two large IKC
clusters, could not complete due to memory issues. Any nodes from these two clusters were returned
as singleton clusters in the final output clustering.

• Filtering during pre-processing: Removing clusters of size at most 10 as well as trees (defined as
acyclic connected clusters, or equivalently connected clusters where the number of edges is exactly one
less than the number of nodes). We used the following command for this step:

– subset graph nonnetworkit.R followed by make cm ready.R

• CM: Applying connectivity modifier with the following commands (assuming the clustering method
used is Leiden), where the option -g specifies the resolution parameter:

$ cm -i <cleaned_network.tsv > -c leiden -e <filtered_leiden_clustering.tsv > -g <r>

-t 1log10 -o <cm_output.tsv >

$ cm2universal -g <cleaned_network.tsv > -i <cm_output.tsv > -o <cm_output.tsv >

• Filtering during post-processing: Removing clusters of size at most 10, using the same commands
as the first filtering step.

– post cm filter.R: the default, a simple script that removes all clusters of size 10 or less.

Important note: The current version of the CM pipeline is an improvement over the earlier version,
available at https://github.com/RuneBlaze/connectivity-modifier. Some of the changes fixed errors
in the implementation in terms of faithfully performing the algorithmic steps (for example, how disconnected
clusters are handled, whether given as input or created during the CM pipeline), and other changes were
made to ensure that how we recorded ‘extant clusters’ was done correctly.

9

https://github.com/RuneBlaze/connectivity-modifier

S3 Experiments on LFR Graphs

S3.1 Emulating Real World Networks with LFR Graphs

The code for estimating the parameters of a pair of network and clustering and generating an LFR benchmark
graph that represents their properties is available at https://github.com/ytabatabaee/emulate-real-nets and
was used with the following commands.

python3 estimate_properties.py -n <network.tsv > -c <clustering_memberships.tsv >

that produces a json file containing all parameters of the network/clustering pair and then this json file is
used to generate an LFR graph as follows

python3 gen_lfr.py -n <clustering_memberships.json > -lp <lfr -benchmark -software -path >

-cm <cmin_value >

in which the LFR software is used with the following command:

./ binary_networks/benchmark -N <node -count > -k <avg -degree >

-maxk <max -degree > -mu <mixing -parameter >

-maxc <max -cluster -size > -minc <min -cluster -size >

-t1 <degree -exponent > -t2 <comm -size -exponent >

As discussed in the main paper, a somewhat limited range of parameters can be used to successfully
generate an LFR graph. Due to restrictions of the LFR methodology, we made the following adjustments in
our experiments for emulating our collection of empirical networks:

• LFR software is not scalable to large networks, and therefore we emulated the two largest networks
(Open Citations and CEN) with LFR graphs with 3,000,000 nodes, and adjusted the maximum degree
and maximum community size accordingly.

• The Wikipedia talk network (wiki talk) has a very small average degree of 3.89, a maximum degree
of 100029, and an estimated power-law degree exponent of 1.90. Based on the assumptions of the
LFR methodology, we had to reduce the input maximum degree (maxk) to 31, as for the given average
degree, any value above this for maxk resulted in an error from the LFR software.

• In all our real networks with all resolution parameters, the minimum community size was 1, as singletons
were always present in the empirical networks. However, the LFR methodology assumes that all nodes
are in a valid community. In most cases, when setting minc = 1, the LFR software either took very
long to run (more than our time limit of 4 hours per network), or could not generate the community
size distribution with the given properties at all. Therefore, with the exception of high energy physics
citation network for which minc = 1 successfully generated the LFR, for other networks, we found the
minimum value of minc that generated the LFR graph in less than 4 hours with a brute-force search
(exploring all values of minc starting from 1, to the point where the LFR was generated in the given
time limit).

Figures S2 and S3 show a comparison between the degree distribution and community size distributions
of the six empirical networks and their corresponding LFR graphs for different resolution values. Tables S7
and S8 show various parameters of the empirical networks and their corresponding LFR graphs.

S3.2 LFR Accuracy Experiments

For the accuracy experiments in the paper, we compared the accuracy of the pre-CM and post-CM clusterings
of the LFR networks with respect to the LFR ground-truth communities. We used the normalized mutual
information (NMI), adjusted mutual information (AMI), and adjusted Rand index (ARI) criteria that are
commonly used for partition comparison, as implemented in the Scikit-learn library. The nodes in the original
network that are removed from the post-CM clustering are added back as singletons (with distinct clusters),
and hence the partitions are compared on the whole set of nodes.

10

https://github.com/ytabatabaee/emulate-real-nets

Table S7: Properties of the empirical networks and their LFR model graphs for Leiden-CPM clusterings. Parameters:
r stands for resolution value used for generating the Leiden clustering, µ stands for the mixing parameter, and τ1
and τ2 are the estimated power-law exponents for the degree and the community size distributions respectively.

network r nodes edges average degree µ τ1 τ2

open citations 0.0001 75,025,194 1,363,303,678 36.34 0.407 2.974 4.045
open citations LFR 0.0001 3,000,000 55,134,095 36.76 0.407 2.978 4.036
open citations 0.001 75,025,194 1,363,303,678 36.34 0.500 2.974 4.375
open citations LFR 0.001 3,000,000 55,067,530 36.71 0.500 2.980 4.372
open citations 0.01 75,025,194 1,363,303,678 36.34 0.602 2.974 5.205
open citations LFR 0.01 3,000,000 54,801,081 36.53 0.602 2.983 5.195
open citations 0.1 75,025,194 1,363,303,678 36.34 0.711 2.974 6.194
open citations LFR 0.1 3,000,000 54,906,125 36.60 0.711 2.980 6.192
open citations 0.5 75,025,194 1,363,303,678 36.34 0.871 2.974 6.152
open citations LFR 0.5 3,000,000 55,104,605 36.74 0.871 2.978 6.135

CEN 0.0001 13,989,436 92,051,051 13.16 0.402 2.618 2.259
CEN LFR 0.0001 3,000,000 20,817,560 13.88 0.402 2.620 2.269
CEN 0.001 13,989,436 92,051,051 13.16 0.522 2.618 2.368
CEN LFR 0.001 3,000,000 20,809,023 13.87 0.522 2.620 2.372
CEN 0.01 13,989,436 92,051,051 13.16 0.645 2.618 5.420
CEN LFR 0.01 3,000,000 20,554,876 13.70 0.646 2.616 5.402
CEN 0.1 13,989,436 92,051,051 13.16 0.879 2.618 6.184
CEN LFR 0.1 3,000,000 20,743,710 13.83 0.878 2.622 6.152
CEN 0.5 13,989,436 92,051,051 13.16 0.988 2.618 3.270
CEN LFR 0.5 3,000,000 20,821,520 13.88 0.988 2.620 3.296

cit patents 0.0001 3,774,768 16,518,947 8.75 0.211 4.017 2.981
cit patents LFR 0.0001 3,774,768 15,640,593 8.29 0.211 4.000 2.974
cit patents 0.001 3,774,768 16,518,947 8.75 0.284 4.017 4.830
cit patents LFR 0.001 3,774,768 15,642,211 8.29 0.284 4.024 4.829
cit patents 0.01 3,774,768 16,518,947 8.75 0.382 4.017 2.565
cit patents LFR 0.01 3,774,768 15,640,109 8.29 0.382 4.000 2.573
cit patents 0.1 3,774,768 16,518,947 8.75 0.511 4.017 4.639
cit patents LFR 0.1 3,774,768 15,643,333 8.29 0.511 4.010 4.623
cit patents 0.5 3,774,768 16,518,947 8.75 0.805 4.017 4.162
cit patents LFR 0.5 3,774,768 15,606,781 8.27 0.807 4.004 4.124

cit hepph 0.0001 34,546 420,877 24.37 0.086 3.631 2.313
cit hepph LFR 0.0001 34,546 431,138 24.96 0.086 3.632 2.280
cit hepph 0.001 34,546 420,877 24.37 0.219 3.631 1.465
cit hepph LFR 0.001 34,546 431,138 24.96 0.219 3.632 1.659
cit hepph 0.01 34,546 420,877 24.37 0.384 3.631 1.825
cit hepph LFR 0.01 34,546 430,104 24.90 0.384 3.632 2.089
cit hepph 0.1 34,546 420,877 24.37 0.570 3.631 2.333
cit hepph LFR 0.1 34,546 431,138 24.96 0.570 3.632 6.137
cit hepph 0.5 34,546 420,877 24.37 0.781 3.631 2.790
cit hepph LFR 0.5 34,546 431,138 24.96 0.781 3.632 3.544

wiki topcats 0.0001 1,791,489 25,444,207 28.41 0.379 2.430 1.645
wiki topcats LFR 0.0001 1,791,489 24,504,754 27.36 0.379 2.440 1.684
wiki topcats 0.001 1,791,489 25,444,207 28.41 0.544 2.430 1.913
wiki topcats LFR 0.001 1,791,489 24,504,163 27.36 0.544 2.440 1.927
wiki topcats 0.01 1,791,489 25,444,207 28.41 0.682 2.430 2.429
wiki topcats LFR 0.01 1,791,489 24,491,676 27.34 0.682 2.441 2.432
wiki topcats 0.1 1,791,489 25,444,207 28.41 0.791 2.430 3.281
wiki topcats LFR 0.1 1,791,489 24,346,081 27.18 0.793 2.445 3.281
wiki topcats 0.5 1,791,489 25,444,207 28.41 0.902 2.430 4.045

11

network r nodes edges average degree µ τ1 τ2

wiki talk 0.0001 2,394,385 4,659,565 3.89 0.170 1.901 2.824
wiki talk LFR 0.0001 2,394,385 3,240,464 2.71 0.162 2.138 2.816
wiki talk 0.001 2,394,385 4,659,565 3.89 0.346 1.901 1.901
wiki talk LFR 0.001 2,394,385 3,299,276 2.76 0.342 2.081 1.943
wiki talk 0.01 2,394,385 4,659,565 3.89 0.754 1.901 1.917
wiki talk LFR 0.01 2,394,385 3,297,120 2.75 0.753 2.062 2.277
wiki talk 0.1 2,394,385 4,659,565 3.89 0.941 1.901 2.228
wiki talk LFR 0.1 2,394,385 3,296,124 2.75 0.940 2.062 2.340
wiki talk 0.5 2,394,385 4,659,565 3.89 0.984 1.901 3.064

Table S8: Properties of the empirical networks and their LFR model graphs for Leiden-modularity clusterings.
Parameters: µ stands for the mixing parameter, and τ1 and τ2 are the estimated power-law exponents for the degree
and the community size distributions respectively.

network nodes edges average degree µ τ1 τ2

open citations 75,025,194 1,363,303,678 36.34 0.129 2.974 2.697
open citations LFR 3,000,000 55,128,496 36.75 0.129 2.978 2.707
CEN 13,989,436 92,051,051 13.16 0.180 2.618 1.255
CEN LFR 3,000,000 20,821,202 13.88 0.180 2.620 1.489
cit patents 3,774,768 16,518,947 8.75 0.114 4.017 2.365
cit patents LFR 3,774,768 15,648,081 8.29 0.114 4.000 2.361
cit hepph 34,546 420,877 24.37 0.155 3.631 1.305
cit hepph LFR 34,546 431,138 24.96 0.155 3.632 1.525
wiki topcats 1,791,489 25,444,207 28.41 0.199 2.430 3.961
wiki topcats LFR 1,791,489 23,581,074 26.33 0.200 2.454 3.947
wiki talk 2,394,385 4,659,565 3.89 0.115 1.901 2.074
wiki talk LFR 2,394,385 3,278,574 2.74 0.114 2.082 2.074

Table S9: Percentage of LFR ground-truth clusters that are disconnected. The LFR graphs are generated based on
the Leiden-modularity and Leiden-CPM (with five resolution values) clusterings for each of the six empirical networks.
“N.A.” means the statistic is unavailable because the LFR network for that condition could not be created.

Leiden-CPM
Leiden-mod 0.0001 0.001 0.01 0.1 0.50

open citations 0 0 0 0 0 0.001
CEN 0 0 0 0.04 90.81 100
cit hepph 0 0 0 0 0 0
cit patents 0 0 0 0 0.002 14.69
wiki talk 70.72 66.36 87.03 100 100 N.A.
wiki topcats 0 0 0 0 0.013 N.A.

12

100

101

102

103

104

105

106

107

open_citations CEN

100

101

102

103

104

105

106

107

cit_patents cit_hepph

100 101 102 103 104 105

100

101

102

103

104

105

106

107

wiki_topcats

100 101 102 103 104 105

wiki_talk

Degree

Co
un

t

Empirical LFR

Figure S2: Comparison between the degree distribution of empirical and LFR networks using CPM
with r = 0.01. The LFR networks are produced to emulate the characteristics of their corresponding real network.
For the CEN and the OpenCitations network, the number of nodes of the LFR network is 3,000,000, and for the other
networks it exactly matches the number of nodes in its corresponding empirical network. The clustering method for
the empirical networks was CPM with resolution parameter 0.01. The axes are shown in log scale.

13

101

103

105

107

0.5 0.1 0.01 0.001 0.0001

open_citations

modularity

101

103

105

107

CEN

101

103

105

107 cit_patents

101

103

105

107 cit_hepph

101

103

105

107 wiki_topcats

101

103

105

107 wiki_talk

102 105

101

103

105

107

102 105 102 105 102 105 102 105 102 105

orkut

Cluster size

Cl
us

te
r c

ou
nt

Original Leiden clustering LFR ground-truth Leiden clustering of LFR

Figure S3: Cluster size distribution for all networks. The LFR ground-truth communities (shown in light
green) are generated according to the parameters estimated from the Leiden clustering of the empirical network
(shown in black), and then the LFR network is re-clustered using Leiden with the same resolution value (in orange).
We were not able to generate an LFR graph for the Orkut network. The axes are shown in log scale.

14

S3.3 Additional Results for Experiments with Synthetic Networks

15

101

103

105

107

pre-CM Filter
0.5

post-CM

101

103

105

107

0.1

101

103

105

107

0.01

101

103

105

107

0.001

101

103

105

107

0.0001

101 103 105 107

101

103

105

107

101 103 105 107 101 103 105 107

m
odularity

Cluster size

Cl
us

te
r c

ou
nt

Empirical LFR

Figure S4: Impact of CM-processing on cluster size distributions of Leiden clusterings of empirical
and LFR networks for the open citations network. The empirical network has 75,025,194 nodes with an
average degree of 36.35. Each row represents a different Leiden clustering method, with CPM-optimization for the
top 5 rows and modularity-optimization for the bottom row. Each column represents a stage in the CM pipeline. The
panels show the cluster size distributions in each step of running CM for the empirical network and its corresponding
LFR graph. The axes are shown in log scale.

16

101

103

105

107

pre-CM Filter

0.5

post-CM

101

103

105

107

0.1

101

103

105

107

0.01

101

103

105

107

0.001

101

103

105

107

0.0001

101 103 105

101

103

105

107

101 103 105 101 103 105

m
odularity

Cluster size

Cl
us

te
r c

ou
nt

Empirical LFR

Figure S5: Impact of CM-processing on cluster size distributions of Leiden clusterings of empirical
and LFR networks for the CEN network. The empirical network has 13,989,436 nodes with an average degree
of 13.16. Each row represents a different Leiden clustering method, with CPM-optimization for the top 5 rows and
modularity-optimization for the bottom row. Each column represents a stage in the CM pipeline. The panels show
the cluster size distributions in each step of running CM for the empirical network and its corresponding LFR graph.
The axes are shown in log scale.

17

100

101

102

103

104

105

106

pre-CM Filter

0.5

post-CM

100

101

102

103

104

105

106

0.1

100

101

102

103

104

105

106

0.01

100

101

102

103

104

105

106

0.001

100

101

102

103

104

105

106

0.0001

100 101 102 103 104 105

100

101

102

103

104

105

106

100 101 102 103 104 105 100 101 102 103 104 105

m
odularity

Cluster size

Cl
us

te
r c

ou
nt

Empirical LFR

Figure S6: Impact of CM-processing on cluster size distributions of Leiden clusterings of empirical
and LFR networks for the cit patents network. The empirical network has 3,774,768 nodes with an average
degree of 8.75. Each row represents a different Leiden clustering method, with CPM-optimization for the top 5 rows
and modularity-optimization for the bottom row. Each column represents a stage in the CM pipeline. The panels
show the cluster size distributions in each step of running CM for the empirical network and its corresponding LFR
graph. The axes are shown in log scale.

18

100

101

102

103

104

pre-CM Filter

0.5

post-CM

100

101

102

103

104

0.1

100

101

102

103

104

0.01

100

101

102

103

104

0.001

100

101

102

103

104

0.0001

100 101 102 103 104

100

101

102

103

104

100 101 102 103 104 100 101 102 103 104

m
odularity

Cluster size

Cl
us

te
r c

ou
nt

Empirical LFR

Figure S7: Impact of CM-processing on cluster size distributions of Leiden clusterings of empirical
and LFR networks for the cit hepph network. The empirical network has 34,546 nodes with an average degree
of 24.37. Each row represents a different Leiden clustering method, with CPM-optimization for the top 5 rows and
modularity-optimization for the bottom row. Each column represents a stage in the CM pipeline. The panels show
the cluster size distributions in each step of running CM for the empirical network and its corresponding LFR graph.
The axes are shown in log scale.

19

100

101

102

103

104

105

106

pre-CM Filter

0.5

post-CM

100

101

102

103

104

105

106

0.1

100

101

102

103

104

105

106

0.01

100

101

102

103

104

105

106

0.001

100

101

102

103

104

105

106

0.0001

100 101 102 103 104 105

100

101

102

103

104

105

106

100 101 102 103 104 105 100 101 102 103 104 105

m
odularity

Cluster size

Cl
us

te
r c

ou
nt

Empirical LFR

Figure S8: Impact of CM-processing on cluster size distributions of Leiden clusterings of empirical
and LFR networks for the wiki topcats network. The empirical network has 1,791,489 nodes with an average
degree of 28.41. Each row represents a different Leiden clustering method, with CPM-optimization for the top 5 rows
and modularity-optimization for the bottom row. Each column represents a stage in the CM pipeline. The panels
show the cluster size distributions in each step of running CM for the empirical network and its corresponding LFR
graph. For this network, we were not able to generate a corresponding LFR graph for r = 0.5. The axes are shown
in log scale. 20

100

101

102

103

104

105

106

pre-CM Filter

0.5

post-CM

100

101

102

103

104

105

106

0.1

100

101

102

103

104

105

106

0.01

100

101

102

103

104

105

106

0.001

100

101

102

103

104

105

106

0.0001

100 101 102 103 104 105

100

101

102

103

104

105

106

100 101 102 103 104 105 100 101 102 103 104 105

m
odularity

Cluster size

Cl
us

te
r c

ou
nt

Empirical LFR

Figure S9: Impact of CM-processing on cluster size distributions of Leiden clusterings of empirical
and LFR networks for the wiki talk network. The empirical network has 2,394,385 nodes with an average
degree of 3.89. Each row represents a different Leiden clustering method, with CPM-optimization for the top 5 rows
and modularity-optimization for the bottom row. Each column represents a stage in the CM pipeline. The panels
show the cluster size distributions in each step of running CM for the empirical network and its corresponding LFR
graph. For this network, we were not able to generate a corresponding LFR graph for r = 0.5. The axes are shown
in log scale. 21

100

101

102

103

104

105

pre-CM Filter

0.5

post-CM

100

101

102

103

104

105

0.1

100

101

102

103

104

105

0.01

100

101

102

103

104

105

0.001

100

101

102

103

104

105

0.0001

101 103 105

100

101

102

103

104

105

101 103 105 101 103 105

m
odularity

Cluster size

Cl
us

te
r c

ou
nt

Empirical

Figure S10: Impact of CM-processing on cluster size distributions of Leiden clusterings of the empirical
Orkut network. The empirical network has 3,072,441 nodes with an average degree of 76.28. Each row represents
a different Leiden clustering method, with CPM-optimization for the top 5 rows and modularity-optimization for the
bottom row. Each column represents a stage in the CM pipeline. The panels show the cluster size distributions in
each step of running CM for the empirical network. For this network, we were not able to generate a corresponding
LFR graph in any condition. The axes are shown in log scale.

22

0.0

0.2

0.4

0.6

0.8

1.0
CEN open_citations cit_hepph

mod 0.0001 0.001 0.01 0.1 0.5
0.0

0.2

0.4

0.6

0.8

1.0
cit_patents

mod 0.0001 0.001 0.01 0.1 0.5

wiki_topcats

mod 0.0001 0.001 0.01 0.1 0.5

wiki_talk

Networks

Ad
ju

st
ed

 R
an

d
in

de
x

(A
RI

)

pre-CM
post-CM

Figure S11: Comparison between ARI (Adjusted Rand Index) accuracy of pre-CM and post-CM
clusterings of synthetic networks. The panels show accuracy measured in terms of adjusted Rand index (ARI)
with respect to the LFR ground-truth communities. Each condition on the x-axis corresponds to a different LFR
network, generated based on Leiden-modularity or Leiden-CPM with that specific resolution parameter. In total,
there are 34 different LFR networks.

23

	cm-for-webpage
	cm_sa_rev3_suppl
	Additional Results
	Connectivity Modifier Pipeline
	Experiments on LFR Graphs
	Emulating Real World Networks with LFR Graphs
	LFR Accuracy Experiments
	Additional Results for Experiments with Synthetic Networks

