FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments

Morgan N. Price, Paramvir S. Dehal, Adam P. Arkin

Presented by Arjun P. Athreya
April 21, 2015
CS 598AGB
Fast Tree 2

- Five stages of computation
 - Heuristic neighbor-joining (NJ)

- Tree length reductions
 - Nearest-neighbor interchanges (NNI)
 - Subtree-prune-regraft (SPR) moves
 - Distance model

- Maximum Likelihood with NNIs

- Local support values
Heuristic NJ

- Produces rough topology

Optimization:

- Profile for internal nodes instead of a distance-matrix (space saving!)
- Remembers best join for each node
- Remembers top pair-wise distances (space saving!)
- Updates best join for a node as it traverses
Tree-length reductions: NNI

- **Topology refinement**

- **Optimization:**
 - work with profiles, than pairwise distances (space saving!)
 - 2 log(N) rounds of NNI

Space: $O(NL_a + N\sqrt{N})$ **Time:** $O(N\sqrt{N}\log(N)L_a)$
SPR moves

- A subtree is removed from the tree, reinserted somewhere else

- Optimization:
 - Consider shortest SPRs first, and then extends the promising candidates (space savings!)
 - For each subtree, only two SPR moves (time saving!)
Maximum Likelihood

- Improve tree-topology and branch lengths
- Jukes-Cantor model, accounts for variable rates (20 categories, geometrically distributed)

Operation:
- Likelihood of trees generated using NNI
- Estimate branch lengths

Optimizations:
- Stop NNI if likelihood of rearrangements are not improving
- NNI restricted to $2\log(N)$
- Skip SPR in parts of tree that did not improve in recent rounds
Results:

Metric: RF distances

FastTree outperforms other tools which don’t use SPR’s
Results: likelihoods on biological data

- RAxML still better
- Exhaustive ML search still wins

<table>
<thead>
<tr>
<th>Method</th>
<th>16S</th>
<th>COG</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAxML 7.0.4 (GTR+CAT or JTT+CAT, SPRs)</td>
<td>$-168,104$</td>
<td>$-206,724$</td>
</tr>
<tr>
<td>FastTree 2.0.0 (GTR+CAT or JTT+CAT)</td>
<td>$-168,577$</td>
<td>$-206,993$</td>
</tr>
<tr>
<td>PhyML 3.0 (GTR+Γ_4 or JTT+Γ_4, no SPRs)</td>
<td>$-168,603$</td>
<td>$-207,156$</td>
</tr>
</tbody>
</table>

For all topologies, the log likelihood was computed with RAxML 7, re-optimized branch lengths and model parameters, and the GTR+Γ_4 or JTT+Γ_4 models for 16S or COG, respectively. All differences between FastTree and other methods were statistically significant ($P < 10^{-10}$) except for the comparison with PhyML on 16S rRNAs ($P = 0.07$, paired t test). doi:10.1371/journal.pone.0009490.t002
Results: RAxML vs FastTree2

- But, FastTree found 96-98% of splits RAxML found
- Heuristics did not affect the results much and performed as expected compared to simulated data
Results: Runtime

Table 4. Running time and memory usage on genuine alignments.

<table>
<thead>
<tr>
<th>Alignment</th>
<th>Distinct Sequences</th>
<th>Distinct Positions</th>
<th>FastTree 2.0.0 Model</th>
<th>FastTree 2.0.0 Hours</th>
<th>RAXML 7 Hours</th>
<th>PhyML 3 Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>16S rRNA, subsets</td>
<td>500</td>
<td>1,287 nt.</td>
<td>GTR</td>
<td>0.02</td>
<td>22</td>
<td>2.9</td>
</tr>
<tr>
<td>COGs, subsets</td>
<td>500</td>
<td>65–1,009 a.a.</td>
<td>JTT</td>
<td>0.02</td>
<td>5.2</td>
<td>7.2</td>
</tr>
<tr>
<td>COGs, subsets</td>
<td>2,500</td>
<td>197–384 a.a.</td>
<td>JTT</td>
<td>0.11</td>
<td>61</td>
<td>–</td>
</tr>
<tr>
<td>Efflux permeases</td>
<td>8,362</td>
<td>394 a.a.</td>
<td>JTT</td>
<td>0.25</td>
<td>197</td>
<td>>1,200</td>
</tr>
<tr>
<td>16S rRNAs, families</td>
<td>15,011</td>
<td>1,287 nt.</td>
<td>GTR</td>
<td>0.66</td>
<td>64</td>
<td>>2,000</td>
</tr>
<tr>
<td>ABC transporters</td>
<td>39,092</td>
<td>214 a.a.</td>
<td>JTT</td>
<td>1.02</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>16S rRNAs, all</td>
<td>237,882</td>
<td>1,287 nt.</td>
<td>JC</td>
<td>21.8</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

All runs used a single thread of execution. All runs accounted for variable rates across sites, using CAT for RAxML 7 and FastTree 2 or Γ_4 for PhyML 3. All FastTree runs include local SH-like supports and all RAxML runs include branch lengths under Γ_4. RAxML and PhyML were run without support values (no bootstrap). For random subsets of 500 16S rRNAs or for COGs, we show average running times. For alignments with over 1,000 sequences, we used RAxML 7.2.1's fast convergence option. doi:10.1371/journal.pone.0009490.t004

Would take years!
Results: Likelihood over time

4,114 16S rRNAs

Seven COGs (2,500 proteins each)

RAxML with same starting tree as FastTree shows similar improvement in likelihood with time
Conclusion

- FastTree2 makes intelligent decisions on improving speed while maintaining pretty good accuracy.

- Impact of heuristics, computational tricks do not impact results a lot.

- RAxML is still a winner for accuracy, but at the cost of time (may never complete for large datasets).
 - Personal experience on running FastTree 2 and RAxML for course project, 1 minute vs 30 minutes on small amino acid data.