Phylogenetic Network Inference with PhyloNet

Zhen Cao, Huw A. Ogilvie, and Zhi Yan
Department of Computer Science
Rice University

The 2020 Phylogenomics Symposium and Software School
Gainesville, Florida
3 January 2020
What is PhyloNet?

Inferring Phylogenetic Networks Using PhyloNet

DINGQIAO WEN¹, YUN YU¹, JIAFAN ZHU¹, AND LUAY NAKHLEH¹,²,*

¹Computer Science and ²BioSciences, Rice University, 6100 Main Street, Houston, TX 77005, USA;
*Correspondence to be sent to: Computer Science, Rice University, 6100 Main Street, Houston, TX 77005, USA;
E-mail: nakhleh@rice.edu.

Received 21 December 2017; reviews returned 20 February 2018; accepted 23 February 2018
Associate Editor: David Posada

Abstract.—PhyloNet was released in 2008 as a software package for representing and analyzing phylogenetic networks. At the time of its release, the main functionalities in PhyloNet consisted of measures for comparing network topologies and a single heuristic for reconciling gene trees with a species tree. Since then, PhyloNet has grown significantly. The software package now includes a wide array of methods for inferring phylogenetic networks from data sets of unlinked loci while accounting for both reticulation (e.g., hybridization) and incomplete lineage sorting. In particular, PhyloNet now allows for maximum parsimony, maximum likelihood, and Bayesian inference of phylogenetic networks from gene tree estimates. Furthermore, Bayesian inference directly from sequence data (sequence alignments or biallelic markers) is implemented. Maximum parsimony is based on an extension of the “minimizing deep coalescences” criterion to phylogenetic networks, whereas maximum likelihood and Bayesian inference are based on the multispecies network coalescent. All methods allow for multiple individuals per species. As computing the likelihood of a phylogenetic network is computationally hard, PhyloNet allows for evaluation and inference of networks using a pseudolikelihood measure. PhyloNet summarizes the results of the various analyzes and generates phylogenetic networks in the extended Newick format that is readily viewable by existing visualization software. [Bayesian inference; incomplete lineage sorting; maximum likelihood; maximum parsimony; multispecies network coalescent; phylogenetic networks; reticulation.]
What is a Phylogenetic Network?

A leaf-labeled, rooted, directed, acyclic graph (rDAG)
Phylogenomics: ILS + Reticulation

Multispecies Network Coalescent

Model of Sequence Evolution

locus 1 locus 2 locus 3 locus 4
Inference of Phylogenetic Networks

Input: Sequence alignments for m loci

\[S = \{ S_1, S_2, \ldots, S_m \} \]

Output: Phylogenetic network and inheritance probabilities

\((\Psi, \Gamma) \)
Maximum Parsimony Inference

Input gene trees

Network with 1 reticulation and 2 extra lineages
Statistical Inference

Population sizes, divergence times, ...

Inheritance probabilities, one per locus per reticulation node

Assuming independent loci:

\[p(S|\Psi) = \prod_i \int_G p(S_i|g)p(g|\Psi)dg \]
Inference Process and Approaches

Multiple sequence alignments of unlinked loci

Unlinked bi-allelic markers

Two-step inference
Direct inference

Gene tree estimates
Network inference

Parsimony
Likelihood
Pseudo likelihood
Bayesian

MDC network
MLE network
MPLE network
MAP network or posterior distribution

Bayesian

MAP network or posterior distribution

Bayesian

Pseudo likelihood

MAP network or posterior distribution

MLE network

InferNetwork_MP
InferNetwork_ML
InferNetwork_MPL
MCMC_GT
MCMC_SEQ
MCMC_BiMarkers
MLE_BiMarkers

PhyloNet commands

Output type

Network topology
Network topology and associated parameters
List of Inference Commands

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Ref</th>
<th>Since</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods for Species Network (and Tree) Inference (all account for ILS)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCMC_SEQ</td>
<td>Bayesian MCMC posterior estimation of phylogenetic networks and gene trees on sequences from multiple independent loci.</td>
<td>here</td>
<td>3.6.1</td>
</tr>
<tr>
<td>MCMC_BiMarkers</td>
<td>Bayesian estimation of the posterior distribution of phylogenetic networks given bi-allelic genetic markers (SNPs, AFLPs, etc).</td>
<td>here</td>
<td>3.6.1</td>
</tr>
<tr>
<td>MCMC_GT</td>
<td>Bayesian MCMC posterior estimation of phylogenetic networks given a list of gene tree topologies.</td>
<td>here</td>
<td>3.6.0</td>
</tr>
<tr>
<td>MLE_BiMarkers</td>
<td>Maximum (pseudo-)likelihood estimation of phylogenetic networks given bi-allelic genetic markers (SNPs, AFLPs, etc).</td>
<td>here</td>
<td>3.6.4</td>
</tr>
<tr>
<td>InferNetwork_MPL</td>
<td>Infers a phylogenetic network from gene trees under maximum pseudo-likelihood.</td>
<td>here</td>
<td>3.5.5</td>
</tr>
<tr>
<td>InferNetwork_ML_Bootstrap</td>
<td>Infers a phylogenetic network from gene trees under maximum likelihood with parametric bootstrap.</td>
<td>here</td>
<td>3.5.2</td>
</tr>
<tr>
<td>InferNetwork_ML.CV</td>
<td>Infers a phylogenetic network from gene trees under maximum likelihood with cross-validation.</td>
<td>here</td>
<td>3.5.2</td>
</tr>
<tr>
<td>InferNetwork_ML</td>
<td>Infers a phylogenetic network from gene trees under maximum likelihood.</td>
<td>here</td>
<td>3.4.0</td>
</tr>
<tr>
<td>InferNetwork_MP</td>
<td>Infers a phylogenetic network from gene trees under the MDC criterion.</td>
<td>here</td>
<td>3.4.0</td>
</tr>
<tr>
<td>NetMerger</td>
<td>Merge subnetworks inferred by MCMC_SEQ or MCMC_BiMarkers to a full network.</td>
<td>here</td>
<td></td>
</tr>
</tbody>
</table>
Can we Infer a Tree?

- **Yes.** Since a tree is a special case of network (a network with zero reticulation nodes), all these methods can be used to infer species trees.

- Simply **set the maximum number of reticulations to 0** and the methods will search the tree (not network) space!
Can we Fix a Species Tree and Search for Reticulations?

- **NO, in general, PhyloNet does not** designate a species tree and search for reticulations to add to it!

- But, if the user wants to start with a species tree and search for “best” reticulations to add to it, these are implemented in InferNetwork_MPL and InferNetwork_MP using -fs.
Computational Difficulty

• Phylogenetic network inference is computationally very hard.

• All the methods in PhyloNet are **heuristics**.

• (This answers the question “Why did different runs return different networks?”)
How to determine the Number of Reticulations

• It is a very hard problem (the same as the problem of determining the number of clusters in the clustering problem)

• The Bayesian approach performs best at determining the number, as the prior “naturally” accounts for model complexity.

• In general, we recommend incrementally increasing the number of reticulations allowed and comparing the results.
How to determine the Number of Reticulations

• We also recommend limiting the number of reticulations allowed in the analysis since it has a huge impact on the computational complexity.

• Inferences based on pseudo-likelihood can scale to larger data sets, though.
Individuals Per Species

• All methods allow data from multiple individuals per species (but that further adds to the computational complexity).

• Missing data (as in missing an entire sequence for a certain locus) is also handled.
Bayesian inference directly from the sequence data

Locus 1:
- 2 individuals from A
- 2 individuals from B
- 0 individuals from C

Locus 3:
- 1 individual from A
- 2 individuals from B
- 1 individual from C

Mapping individuals to species

Bayesian inference directly from the sequence data
Visualizing the Inferred Networks

- Dendroscope: dendroscope.org
- IcyTree: icytree.org
Try PhyloNet for yourself:

Read Advances in Computational Methods for Phylogenetic Networks in the Presence of Hybridization.

The current version of PhyloNet is 3.8.0.

- **Download**
 - Binary jar file

- **Usage**
 - Talk about PhyloNet (June 4, 2018, by Luay Nakhleh at the SSB Standalone Meeting in Ohio)
 - General overview
 - Tutorial (3 January 2020) at the 2020 Phylogenomics Software Symposium held in conjunction with the SSB Standalone Meeting in Gainesville, Florida.
 - Tutorial: Species phylogeny inference (2017)
 - List of PhyloNet commands (see the figure at the bottom of this page for a summary of the available inference methods)
 - The phylogenetic network format (the Rice Newick format) used in PhyloNet can be readily visualized by Dendroscope.

bioinfocs.rice.edu/phylonet
Warmup Example

1. Download PhyloNet and NEXUS file.

<table>
<thead>
<tr>
<th>Name</th>
<th>Date Modified</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>InferNetwork_MP_pl8_0_true.nex</td>
<td>Today at 4:41 PM</td>
<td>25 KB</td>
</tr>
<tr>
<td>PhyloNet_3.8.0.jar</td>
<td>Yesterday at 4:16 PM</td>
<td>26.2 MB</td>
</tr>
</tbody>
</table>

2. Open your terminal, change path

(base) sousmacbookpro:~ ssb zhen$ pwd
/Users/zhen/scrpt/news
(base) sousmacbookpro:~ ssb zhen$ ls
InferNetwork_MP_pl8_0_true.nex PhyloNet_3.8.0.jar

3. Type the command

```java -jar PhyloNet_3.8.0.jar InferNetwork_MP_pl8_0_true.nex```

4. Enter! See your outputs!

Results after run #1
363.0: (((((K,P)I4,F)I3,(C,O)I2)I1,L)I0;
Running Time (min): 0.006133333333333335

Results after run #2
363.0: (((((K,P)I4,F)I3,(C,O)I2)I1,L)I0;
Running Time (min): 0.0029

Results after run #3
363.0: (((((K,P)I4,F)I3,(C,O)I2)I1,L)I0;
Running Time (min): 0.0032166666666667

Results after run #4
363.0: (((((K,P)I4,F)I3,(C,O)I2)I1,L)I0;
Running Time (min): 0.0026

Results after run #5
363.0: (((((K,P)I4,F)I3,(C,O)I2)I1,L)I0;
Running Time (min): 0.001833333333333333

Inferred Network #1:
(((K,P,F),(C,O)),L);
Total number of extra lineages: 363.0