ASTRAL-Pro: Quartet-Based Species-Tree Inference despite Paralogy
Introduction

- **The Problem:** Given a set of gene trees (multi-copy) which evolved under the Gene Duplication and Loss model (GDL), infer the corresponding species tree (single-copy).

- **Existing methods:** DupTree, MulRF, FastMulRFS, ASTRAL-multi, and more...

- **So why do we need ASTRAL-Pro?**
Gene Duplication and Loss

ASTRAL solves the Maximum Quartet Support Species Tree [MQSST] problem.

\[T^* = \arg \max_{T: C(T) \in \mathcal{X}} \sum_{G \in \mathcal{G}} QS(G, T) \]

- \(C(T) \) = Set of bipartitions in tree \(T \)
- \(\mathcal{X} \) = Set of given bipartitions
- \(\mathcal{G} \) = Set of input gene trees
- \(QS(T_1, T_2) \) = Quartet similarity between \(T_1 \) and \(T_2 \), i.e. number of common quartets between \(T_1 \) and \(T_2 \)
ASTRAL

Anchors and Tripartition

Anchors u and v

Tripartition T(u) = A|B|C
For tripartitions $M = M_1|M_2|M_3$, $P = P_1|P_2|P_3$ and $I_{ij} = |M_i \cap P_j|$,

$$QI(M, P) = \text{Number of shared quartets between trees containing } M \text{ and } P$$
where M and P are anchors.

$$= \sum_{i,j,k \in \{1,2,3\}} I_{i1}I_{j2}I_{k3}(I_{i1} + I_{j2} + I_{k3} - 3)$$

$W(P) =$ Number of quartets in gene trees where P is an anchor

$$= \frac{1}{2} \sum_{G \in \mathcal{G}} \sum_{M \in \mathcal{P}(G)} QI(P, M)$$

$$T^* = \arg \max_{T:C(T) \in \mathcal{X}} \sum_{p \in I(T)} W(p)$$

ASTRAL solves this problem in polynomial time with dynamic programming.
Definitions

α_G maps the leaves of gene trees to the species the gene is sampled from.

\[\alpha_G(b_1) = \alpha_G(b_2) = B\]
\[\alpha_G(c_1) = \alpha_G(c_2) = C\]
Definitions

Tagged Tree: Rooted tree where each internal node is tagged as duplication or speciation node.
Definitions

\(SQ = \) Quartet \(Q \) where (1) \(|\alpha_G(Q)| = 4\), (2) LCA of at least 3 elements is a speciation.

Anchor LCA, \(\psi(Q) = \) LCA of anchors of quartet \(Q \)
Definitions

Equivalent SQs: \(Q_1 \sim Q_2 \iff \alpha_G(Q_1) = \alpha_G(Q_2) \land \psi_G(Q_1) = \psi_G(Q_2) \)
MLQST Problem

Per-locus Quartet score, \(q(S, G) = \) Number of equivalent classes in \(G \) induced in \(S \).

MLQST Problem: Find \(S^* \) such that,

\[
S^* = \arg \max_S \sum_{G \in G} p(S, G)
\]

- For singly-labeled trees, MLQST problem becomes MQSST problem.
- ASTRAL-Pro, an extension of ASTRAL can solve MLQST problem.
ASTRAL-Pro

Three main changes to ASTRAL-

1. When computing tripartitions, uses species labels.
2. Changes the calculation of $W(P)$
3. Sums over only speciation nodes when computing W
ASTRAL-Pro

For $M_w = M_1 | M_2 | M_3$, and $I_{ij} = |M_i \cap P_j|

\[QI_{pro}(P, M_w) = \sum_{i,j,k \in \{1,2,3\}, j < k} \left(\frac{I_{1i}}{2} \right) I_{2j} I_{2k} + \sum_{i,j,k \in \{1,2,3\}} \frac{I_{1i} I_{2j} I_{3k} (I_{1i} + I_{2j} - 2)}{2} \]

\[W_{pro}(P) = \sum_{G \in G} \sum_{w \in I(G)} QI_{pro}(P, M_w) \times 1_{speciation} \]

Changing the calculation of W in ASTRAL solves the MLQST problem.
Tagging trees - For any node \(u \) with children \(u_1 \) and \(u_2 \), if \(\alpha_G(u_1) \) and \(\alpha_G(u_2) \) are disjoint sets, then \(u \) is tagged as speciation node. Otherwise, label \(u \) as duplication node.

Rooting trees - Set the internal node as root which has the least number of duplication and loss events in its corresponding tagged tree.

Default bipartition set - Singly labeled trees are sampled from multi-label trees and bipartitions are generated from sampled trees.

ASTRAL-Pro is statistically consistent under the GDL model (Arvestad et. al. 2009) assuming an accurate tagging on the input trees.
Performance Study
Overview of Experiment

● Methods Compared
 ○ DupTree: Solves Gene Tree Parsimony problem (GTP) with heuristic search.
 ○ MulRF: Solves the RFS-multree problem (RFS adapted for multrees) with heuristic search.
 ○ ASTRAL-multi: ASTRAL modified to handle multiple alleles.

● Datasets
 ○ Simulated Datasets (S25, S100):
 ■ Varying GDL rates
 ■ Varying the amounts of ILS
 ■ Varying both the number of species and gene trees
 ○ Biological Datasets:
 ■ 103 species plant dataset
 ■ 16 species fungal dataset
Dataset simulation

● Step 1: Generate true gene trees
 ○ Generated under DLCoal model, which combines ILS and GDL
● Step 2: Generate alignments from those true trees
● Step 3: Infer gene trees with error from alignments
Advantages of Utilizing Multi-copy gene trees

Dataset: S25

Gene Trees = 10,000

(200-900 single-copy across 50 replicas)

- Makes sense. More gene trees tends to mean more accuracy
Varying GDL

Dataset: S25
Species = 25
Gene Trees = 1000
Varying ILS

Dataset: S25

Species = 25

Gene Trees = 1000
Varying Gene & Species Tree Amounts

\(k = \text{Gene Trees} \)

\(n = \text{Species Trees} \)
S100 Summary

- Rankings are calculated by mean error over 10 replicates
- A-Pro clearly the best
- MulRF ends up being the second best

<table>
<thead>
<tr>
<th></th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
</tr>
</thead>
<tbody>
<tr>
<td>MulRF</td>
<td>42</td>
<td>67</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>DupTree</td>
<td>28</td>
<td>8</td>
<td>15</td>
<td>69</td>
</tr>
<tr>
<td>A-Pro</td>
<td>105</td>
<td>14</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>ASTRAL-multi</td>
<td>12</td>
<td>14</td>
<td>71</td>
<td>23</td>
</tr>
</tbody>
</table>
Plant Dataset

- Previous study had inferred 424 single-copy genes; 9,683 multi-copy genes.
 - Had to throw out all the multi-copy genes as they didn’t have a method!
- All 9,683 multi-copy gene trees were analyzed in this experiment.
- DupTree returned clearly inaccurate tree
- A-pro’s tree for the most part agreed with the previous ASTRAL tree.
 - A-pro however, has higher localPP support.
Summary

- We saw the advantage of using multi-copy trees over merely single-copy trees.
- We saw that ASTRAL-Pro performed extremely well under all simulated conditions.
 - Under the vast majority of conditions it outperformed all other methods put up against it.
- We saw that ASTRAL-Pro performed well on biological data.
 - Comparable (and possibly better than) the ASTRAL tree inferred from single-copy gene trees.
Backup Slides
<table>
<thead>
<tr>
<th>Condition</th>
<th>Parameter Ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default model</td>
<td>(n = 25; k = 1,000; \tau \sim LN(21.25; 0.2))</td>
</tr>
<tr>
<td></td>
<td>(\hat{\lambda}+ = 4.9 \times 10^{-10}; \hat{\lambda}- = \hat{\lambda}_+; N_e = 4.7 \times 10^8)</td>
</tr>
<tr>
<td></td>
<td>(C \approx 5; \text{ILS} \approx 70%)</td>
</tr>
<tr>
<td></td>
<td>MGTE = 15% (500 bp) or 36% (100 bp)</td>
</tr>
<tr>
<td>Varying (\hat{\lambda}+, \hat{\lambda}-) (DupLoss rate)</td>
<td>(\hat{\lambda}+ \in {4.9, 2.7, 1.9, 0.52, 0} \times 10^{-10}) (\hat{\lambda}- \in {1, 0.5, 0.1, 0} \times \hat{\lambda}_+); (C \approx {5, 2, 1, 0.2, 0})</td>
</tr>
<tr>
<td>Varying (\hat{\lambda}_+, N_e) (dup rate, ILS)</td>
<td>(\hat{\lambda}_+ \in {4.9, 1.9, 0} \times 10^{-10}); (N_e \in {4.7, 1.9, 0.48, 0.0001} \times 10^8)</td>
</tr>
<tr>
<td></td>
<td>(\text{ILS} \approx {70, 52, 20, 0} %); (C \approx {5, 1, 0})</td>
</tr>
<tr>
<td></td>
<td>MGTE (\approx {15, 15, 15, 16} %) (500 bp) or ({36, 36, 36, 35} %) (100 bp) as (N_e) changes</td>
</tr>
<tr>
<td>Varying (n)</td>
<td>(n \in {10, 25, 100, 250, 500})</td>
</tr>
<tr>
<td></td>
<td>MGTE (\approx {15, 15, 17, 18, 18} %) (500 bp)</td>
</tr>
<tr>
<td></td>
<td>or ({34, 36, 40, 43, 43} %) (100 bp)</td>
</tr>
<tr>
<td>Varying (k)</td>
<td>(k \in {25, 100, 250, 1,000, 2, 500, 10,000})</td>
</tr>
</tbody>
</table>