CS 581

Tandy Warnow
Today’s material (from Chapters 1-3)

• Newick strings
• Representing rooted trees using clades and rooted triplet trees
• Constructing a rooted tree from its set of clades using Hasse Diagrams
• Constructing a rooted tree from rooted triplet trees using Aho, Sagiv, Szymanski, and Ullman
• Constructing a rooted tree from rooted subtrees of any size
Today’s material (from Chapters 1-3)

• Newick strings
• Representing rooted trees using clades and rooted triplet trees
• Constructing a rooted tree from its set of clades using Hasse Diagrams
• Constructing a rooted tree from rooted triplet trees using Aho, Sagiv, Szymanski, and Ullman
• Constructing a rooted tree from rooted subtrees of any size
Newick representations

• For a rooted tree, we represent a graph with a string with the taxa, commas, and nested parentheses.
• For example, what tree is represented by
 \((a,(b,(c,((d,e),(f,g))))))\)?
• How do we represent an unrooted tree? (Easy - root it somewhere, and write down the Newick representation of the rooted version.)
\[(U,((V,W),(X,Y))))\]

or

\[((X,Y),(U,(V,W)))\]

or \ldots
Rooted vs. unrooted

• Task: be able to move between rooted and unrooted representations of trees
• Task: be able to compare two trees and see if they are different or the same
Today’s material (from Chapters 1-3)

• Newick strings
• Representing rooted trees using clades and rooted triplet trees
• Constructing a rooted tree from its set of clades using Hasse Diagrams
• Constructing a rooted tree from rooted triplet trees using Aho, Sagiv, Szymanski, and Ullman
• Constructing a rooted tree from rooted subtrees of any size
Clades

Definition: Let T be a rooted tree leaf-labelled by S, let v an internal node in T, and let X_v be the set of leaves in T below v. Let \(\text{Clades}(T) = \{X_v: v \in V(T)\} \). Note: X_v is also called the “cluster” at node v, so this is sometimes called Clusters(T).

• Question: Given Clades(T), can we compute T?
Triplet Trees

Definition: Let T be a rooted tree leaf-labelled by S. A triplet tree is a rooted 3-leaf subtree of T, such as ((a,b),c). The set of all triplet trees of T is denoted $\text{Triplets}(T)$.

- Question: Given $\text{Triplets}(T)$, can we compute T?
Today’s material (from Chapters 1-3)

• Newick strings
• Representing rooted trees using clades and rooted triplet trees
• Constructing a rooted tree from its set of clades using Hasse Diagrams
• Constructing a rooted tree from rooted triplet trees using Aho, Sagiv, Szymanski, and Ullman
• Constructing a rooted tree from rooted subtrees of any size
Computing rooted trees from clades

- Partially order the set of clades by containment, add in the full set S, and compute the Hasse Diagram of the resultant poset (partially ordered subset)

Note: Hasse Diagrams and Partially Ordered Sets are explained in Appendix B in the textbook.
Tree construction from clades

Questions:
• Accuracy?
• Running time?
• But, *how are we to compute clades*?
Clade compatibility

• Definition: Let T be a rooted tree leaf-labelled by S, v an internal node in T, and X_v the leaves in T below v. Let $\text{Clades}(T) = \{X_v : v \in V(T)\}$.

• Theorem: Let X be a set of subsets of S. Then there exists a tree T such that $X = \text{Clades}(T)$ if and only if for all A, B in X, either A and B are disjoint, or one contains the other.
Proof of the theorem

• One direction is easy
• The other direction is a proof by construction!
Today’s material (from Chapters 1-3)

• Newick strings
• Representing rooted trees using clades and rooted triplet trees
• Constructing a rooted tree from its set of clades using Hasse Diagrams
• Constructing a rooted tree from rooted triplet trees using Aho, Sagiv, Szymanski, and Ullman
• Constructing a rooted tree from rooted subtrees of any size
Rooted Tree Compatibility

- **Input:** Set X of rooted trees, not all on the same set of leaves.
- **Output:** Tree T (if it exists) that agrees with all the trees in X, and otherwise “Fail”

This problem is solvable in polynomial time. Proof: the Aho, Sagiv, Szymanski, and Ullman (ASSU) algorithm!
ASSU algorithm

Given set X of k triplet trees on n species:

- If n>1, then construct graph with each species one of the vertices, and edges (a,b) for triplets ab|c.
- If the graph has a single component, reject (the set is not compatible); else recurse on each component, and return tree formed by making the rooted trees on the components each a subtree off the root of the returned tree.
Why does it work?

If the set X of triplet trees is compatible,

• Then there is a rooted tree T with at least two subtrees off the root, T_1 and T_2.

• Any two leaves a,b in the same subtree cannot be in a triplet $ab|c$.

• Hence the graph formed for the set of triplet trees cannot be connected.

• Therefore the graph formed for the set of triplet trees must have at least two components.

• This argument applies recursively to every subset of X.

• Hence the algorithm returns a tree on which all the triplet trees agree.

If the set X of triplet trees is not compatible, it is not hard to show that the algorithm will detect this (proof by induction on the number of taxa).
Today’s material (from Chapters 1-3)

• Newick strings
• Representing rooted trees using clades and rooted triplet trees
• Constructing a rooted tree from its set of clades using Hasse Diagrams
• Constructing a rooted tree from rooted triplet trees using Aho, Sagiv, Szymanski, and Ullman
• Constructing a rooted tree from rooted subtrees of any size
Compatibility of rooted trees

• Suppose the input is a set X of rooted trees (not necessarily triplet trees).
Compatibility of rooted trees

- Suppose the input is a set X of rooted trees (not necessarily triplet trees).
- Can we use ASSU to determine if X is compatible, and to compute a compatibility supertree for X?
Compatibility of rooted trees

• Suppose the input is a set X of rooted trees (not necessarily triplet trees).
• Can we use ASSU to determine if X is compatible, and to compute a compatibility supertree for X?
• Solution: YES, just encode each rooted tree in X by its set of rooted triplet trees (or some subset of these that suffices to define each tree in X), and then run ASSU.
Summary (so far)

• We have seen how to construct a rooted tree from its set of clades or triplet trees.
• We have seen how to test compatibility of a set of clades or rooted trees.
Summary (so far)

• We have seen how to construct a rooted tree from its set of clades or triplet trees.
• We have seen how to test compatibility of a set of clades or rooted trees.

Can we use these ideas to design divide-and-conquer methods to construct large rooted trees?
Summary (so far)

• We have seen how to construct a rooted tree from its set of clades or triplet trees.
• We have seen how to test compatibility of a set of clades or rooted trees.

What can we do to construct unrooted trees?