Introduction to Triangulated Graphs

Tandy Warnow
Topics for today

• Triangulated graphs: theorems and algorithms (Chapters 11.3 and 11.9)

• Examples of triangulated graphs in phylogeny estimation (Chapters 4.8, 11.3-11.5)
Triangulated (i.e., Chordal) Graphs

• Definition: A graph is triangulated if it has no simple cycles of size four or more.
DCMs are Divide-and-Conquer strategies!
DCMs for phylogeny reconstruction

• Define a **triangulated graph** so that its vertices correspond to the input taxa (or sequences)
• **Decompose** the graph into overlapping subgraphs, thus decomposing the taxa into overlapping subsets.
• Apply the “**base method**” to each subset of taxa, to construct a subset tree
• Apply a **supertree method** to the subset trees to obtain a single tree on the full set of taxa.
DCMs (Disk-Covering Methods)

• DCMs for polynomial time methods improve topological accuracy (empirical observation) and have provable theoretical guarantees under Markov models of evolution.

• DCMs for hard optimization problems reduce running time needed to achieve good levels of accuracy (empirical observation)
Decomposing Triangulated Graphs

Given: Triangulated graph $G = (V,E)$
Output: Decomposition of the vertices into overlapping subsets

Require: Polynomial time!
Technique: Use special properties about triangulated graphs

Max Clique Decomposition
Separator-component Decomposition
Simplicial Vertices

Definition: Let \(G=(V,E) \) be a graph, and let \(v \) be a vertex in \(V \). Then \(v \) is *simplicial* if its set of neighbors (i.e., \(\Gamma(v) \)) is a clique.

To do:

- Give example of a graph that has no simplicial vertices.
- Give example of a graph where every vertex is simplicial.
Perfect Elimination Ordering

Definition: Let \(G=(V,E) \) be a graph on \(n \) vertices. A **perfect elimination ordering** is an ordering of the vertices \(v_1,v_2,\ldots,v_n \) of \(G \) so that each vertex \(v_i \) is simplicial in the graph induced on \(\{v_{i+1},v_{i+2},\ldots,v_n\} \).

Theorems:
- Every triangulated graph has a simplicial vertex.
- In fact, every triangulated graph that is not a clique has two non-adjacent simplicial vertices.
Perfect Elimination Ordering

Definition: Let $G=(V,E)$ be a graph on n vertices. A perfect elimination ordering is an ordering of the vertices $v_1, v_2, ..., v_n$ of G so that each vertex v_i is simplicial in the graph induced on $\{v_{i+1}, v_{i+2}, ..., v_n\}$.

Theorems (Rose 1970): A graph G is triangulated if and only if it has a perfect elimination ordering. Furthermore, given a triangulated graph, a perfect elimination ordering can be found in polynomial time.
Some properties of chordal graphs

• Theorem: Every chordal graph $G=(V,E)$ has at most $|V|$ maximal cliques, and these can be found in polynomial time:
 – Maxclique decomposition.
Some properties of chordal graphs

• Theorem: Every chordal graph $G=(V,E)$ has at most $|V|$ maximal cliques, and these can be found in polynomial time:
 – Maxclique decomposition.

• Prove this using the existence of a perfect elimination ordering.
Some properties of chordal graphs

• Every chordal graph that is not a clique has a vertex separator that is a maximal clique, and it can be found in polynomial time:
 – *Separator-component* decomposition.
Some properties of chordal graphs

• Every chordal graph has at most n maximal cliques, and these can be found in polynomial time: *Maxclique* decomposition.

• Every chordal graph that is not a clique has a vertex separator that is a maximal clique, and it can be found in polynomial time: *Separator-component* decomposition.
Decomposing Triangulated Graphs

Given: Triangulated graph \(G = (V,E) \)
Output: Decomposition of the vertices into overlapping subsets

Require: Polynomial time!
Technique: Use special properties about triangulated graphs

Max Clique Decomposition

Separator-component Decomposition
DCMs are Divide-and-Conquer strategies!
How to combine subset trees?

• Every triangulated graph has a perfect elimination ordering:
 – *enables us to merge correct subtrees and get a correct supertree back, if subtrees are big enough (so that they contain all the short quartet trees).*
Triangulated Graphs and Trees

Theorem (Gravil 1974, Buneman 1974): A graph \(G \) is triangulated if and only if \(G \) is the intersection graph of a set of subtrees of a tree.

Proof: One direction is easy, and the other is not...
Examples of Triangulated Graphs

• Threshold graphs $TG(D,q)$: D is additive and q is any real number, and (x,y) is an edge if and only if $D[x,y] \leq q$.

• Short Subtree Graphs $SSG(T,w)$: T is a tree with edge-weighting w, and every short quartet contributes a 4-clique.

• Character-state intersection graphs from perfect phylogenies.
Examples of Triangulated Graphs

• **Threshold graphs** TG(D, q): D is additive and q is any real number, and (x, y) is an edge if and only if D[x, y] \(\leq\) q.

• Theorem: For all additive matrices D and thresholds q, TG(D, q) is triangulated.

• Proof: Use the fact that all subtree intersection graphs are triangulated.
DCM1-boosting distance-based methods

[Nakhleh et al. ISMB 2001]

Theorem (Warnow et al., SODA 2001):
DCM1-NJ converges to the true tree from polynomial length sequences
Examples of Triangulated Graphs

• **Short Subtree Graphs** $SSG(T,w)$: T is a tree with edge-weighting w, and every short quartet contributes a 4-clique.

• Theorem: For all trees T with edge weighting w, $SSG(T,w)$ is additive.

• Proof: Use the fact that all subtree intersection graphs are triangulated.
Rec-I-DCM3 significantly improves performance

Comparison of TNT to Rec-I-DCM3(TNT) on one large dataset
Examples of Triangulated Graphs

- **Character-state intersection graphs** from perfect phylogenies.
- **Theorem:** For all **perfect phylogenies**, the character state intersection graph (where nodes correspond to character states and edges correspond to any two states at any node in the tree – internal and leaf) is triangulated.
- **Proof:** Use the fact that all subtree intersection graphs are triangulated.
“Homoplasy-Free” Evolution (perfect phylogenies)
Perfect Phylogeny

• A phylogeny T for a set S of taxa is a perfect phylogeny if each state of each character occupies a subtree (no character has back-mutations or parallel evolution)
Perfect phylogenies, cont.

• $A=(0,0), B=(0,1), C=(1,3), D=(1,2)$ has a perfect phylogeny!

• $A=(0,0), B=(0,1), C=(1,0), D=(1,1)$ does not have a perfect phylogeny!
A perfect phylogeny

- A = 0 0
- B = 0 1
- C = 1 3
- D = 1 2
A perfect phylogeny

- $A = 0 \ 0$
- $B = 0 \ 1$
- $C = 1 \ 3$
- $D = 1 \ 2$
- $E = 0 \ 3$
- $F = 1 \ 3$
The Perfect Phylogeny Problem

- Given a set S of taxa (species, languages, etc.) determine if a perfect phylogeny T exists for S.

- The problem of determining whether a perfect phylogeny exists is NP-hard (McMorris et al. 1994, Steel 1991).
Triangulated Graphs

• A graph is triangulated if it has no simple cycles of size four or more.
Triangulated Graphs

Theorem (Gravil 1974, Buneman 1974): A graph G is triangulated if and only if G is the intersection graph of a set of subtrees of a tree.

Proof: One direction is easy, and the other is not...
Perfect Phylogenies and Triangulated Colored Graphs

• Suppose M is a character matrix and T is a perfect phylogeny for M.
• Then let M' be the extension of M to include the additional “species” added at the internal nodes.
• **Character State Intersection Graph G** based on M':
 – For each character α and state i in M', give a vertex $v_{(\alpha, i)}$ and color the vertex with the color for α.
 – Put edges between two vertices if they share any species.
 – G is triangulated and properly colored.
Perfect Phylogenies and Triangulated Colored Graphs

- Suppose M is a character matrix and T is a perfect phylogeny for M.
- Then let M’ be the extension of M to include the additional “species” added at the internal nodes.
- The character state intersection graph G based on M’ is triangulated and properly colored. (Why?)
- But if we had based it on M it might not have been triangulated. (Why?)
A perfect phylogeny

• $A = 0\ 0$
• $B = 0\ 1$
• $C = 1\ 3$
• $D = 1\ 2$
• $E = 0\ 3$
• $F = 1\ 3$

Draw the character state intersection graph.
Matrix with a perfect phylogeny

<table>
<thead>
<tr>
<th></th>
<th>c1</th>
<th>c2</th>
<th>c3</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>s2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>s3</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>s4</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Draw the perfect phylogeny and compute the sequences at the internal nodes.
Matrix with a perfect phylogeny

<table>
<thead>
<tr>
<th></th>
<th>c1</th>
<th>c2</th>
<th>c3</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>s2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>s3</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>s4</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Draw the character state intersection graph for the extended matrix (including the sequences at the internal nodes).
The partition intersection graph

“Yes” Instance of PP:

<table>
<thead>
<tr>
<th></th>
<th>c1</th>
<th>c2</th>
<th>c3</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>s2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>s3</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>s4</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Triangulating colored graphs

• Let $G=(V,E)$ be a graph and c be a vertex coloring of G. Then G can be c-triangulated if a supergraph $G’=(V,E’)$ exists that is triangulated and where the coloring c is proper.

• In other words, G can be c-triangulated if and only if we can add edges to G to make it triangulated without adding edges between vertices of the same color.
A graph that can be c-triangulated
A graph that can be c-triangulated
A graph that cannot be c-triangulated
Triangulating Colored Graphs (TCG)

Triangulating Colored Graphs: given a vertex-colored graph G, determine if G can be c-triangulated.
The PP and TCG Problems

• **Buneman’s Theorem:** A perfect phylogeny exists for a set S *if and only if* the associated character state intersection graph can be c-triangulated.

• The PP and TCG problems are polynomially equivalent and NP-hard.
A no-instance of Perfect Phylogeny

- A = 0 0
- B = 0 1
- C = 1 0
- D = 1 1

An input to perfect phylogeny (left) of four sequences described by two characters, and its character state intersection graph.

Note that the character state intersection graph is 2-colored.
Solving the PP Problem Using Buneman’s Theorem

“Yes” Instance of PP:

<table>
<thead>
<tr>
<th></th>
<th>c1</th>
<th>c2</th>
<th>c3</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>s2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>s3</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>s4</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Solving the PP Problem Using Buneman’s Theorem

“Yes” Instance of PP:

<table>
<thead>
<tr>
<th></th>
<th>c1</th>
<th>c2</th>
<th>c3</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>s2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>s3</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>s4</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Some special cases are easy

• Binary character perfect phylogeny solvable in linear time
• r-state characters solvable in polynomial time for each r (combinatorial algorithm)
• Two character perfect phylogeny solvable in polynomial time (produces 2-colored graph)
• k-character perfect phylogeny solvable in polynomial time for each k (produces k-colored graphs -- connections to Robertson-Seymour graph minor theory)
Early History

- Estabrook (1972), Estabrook et al. (1975): mathematical foundations of perfect phylogenies
- McMorris (1997): binary character compatibility
- Felsenstein (1984): review paper
- Estabrook & Landrum, Fitch 1975: compatibility of two characters
- Steel (1992) and Bodlaender et al. (1992): NP-hardness
- Buneman (1974): reduced perfect phylogeny to triangulating colored graphs
- Kannan and Warnow (1992): established equivalence of TCG and PP

Applications of Perfect Phylogeny

- Tumor Phylogenetics (Mohammed El-Kebir will talk this on April 10-17, 2018)
- Historical Linguistics (I will talk about this on March 15, 2018)
- Population genetics and Haplotype inference