These notes show two ways of proving theorems - one by induction and the other by contradiction.

Theorem 1: Let \(F : \mathbb{Z}^+ \to \mathbb{Z} \) be defined recursively by

- \(F(1) = 3 \)
- \(F(n) = 2F(n - 1) + 1 \) for \(n \geq 2 \)

Then \(F(n) > 2^{n-1} \) for all \(n \in \mathbb{Z}^+ \).

Proof 1: The proof is by contradiction. Let \(P(n) \) be the assertion that \(F(n) > 2^{n-1} \). Suppose it is not the case that \(P(n) \) is true for all positive integers \(n \). Then there is at least one positive integer where \(P(n) \) is false. Let \(N \) be the first such positive integer. Hence \(F(N) \leq 2^{N-1} \) and \(N \geq 1 \).

We first check if \(N = 1 \) is possible. By the definition of the function, \(F(1) = 3 \) and \(3 > 2^{1-1} = 2^0 = 1 \). Hence \(P(1) \) is true, and so \(N = 1 \) is not possible. Therefore \(N \) must be at least 2.

Since \(N \geq 2 \), by the definition of the function, we see that

\[
F(N) = 2F(N - 1) + 1.
\]

Note that \(N - 1 \geq 1 \) (because \(N \geq 2 \)) and so \(P(N - 1) \) is true (because \(N \) is the smallest positive integer \(n \) for which \(P(n) \) is false). Therefore

\[
F(N - 1) > 2^{N-2}.
\]

Putting these together, we obtain

\[
F(N) = 2F(N - 1) + 1 > 2 \times 2^{N-1} + 1 = 2^N + 1 > 2^N.
\]

In other words, we have shown that \(P(N) \) is also true. Thus, we derived a contradiction, and so the statement \(P(n) \) must be true for all positive integers \(n \). Q.E.D.

Proof 2: The second proof is by induction on \(n \). Let \(P(n) \) be as in the previous proof, and note that we have already established that \(P(1) \) is true.

Let \(N \) be an arbitrary positive integer. Our Inductive hypothesis is that \(P(N) \) is true, and we wish to derive that \(P(N + 1) \) is true. In other words, we wish to derive that \(F(N + 1) > 2^N \).

Since \(N \geq 1 \), it follows that \(N + 1 \geq 2 \), and hence by the definition of the function \(F \), we obtain:

\[
F(N + 1) = 2F(N) + 1
\]

By our I.H., \(F(N) > 2^{N-1} \), and so

\[
F(N + 1) = 2F(N) + 1 > 2 \times 2^{N-1} + 1 = 2^N + 1 > 2^N.
\]
In other words, we have shown that

\[F(N + 1) > 2^N \]

and thus \(P(N + 1) \) is true.

Since \(N \) was an arbitrary positive integer, this means we have shown that \(P(n) \) is true for all positive integers \(n \). Q.E.D.