CS 173, Lecture B
Tandy Warnow
Topics for today

• Reminder about Examlet on Tuesday
• My office hours next week:
 – Tuesday 2-3 PM and Thursday 3-4 PM
• Office hours after next week will be based on response to poll sent via Piazza
• Basics of combinatorial counting
Examlet

- One problem about Dynamic Programming
- Several problems about big-oh
- One problem about counting
Examlet

• Give a Dynamic Programming algorithm for one of the following:
 – A two-person game
 – The longest increasing subsequence
 – Determine if you can make change for n cents using coins (e.g., 3-, 5-, and 7-cent coins)
Examlet

• Big-oh
 – Know the definition! (Exists constants…)
 – Be able to find the constants to establish that f is $O(g)$
 – Be able to quickly figure out whether one function is big-oh of another
Examlet

• Counting
 – One problem that will require you to be able to count something, using basic techniques
 – Know the basic techniques
 – Know the basic formulas
 • \(C(n,k)\)
 • \(P(n,k)\)
 • The number of functions from A to B
Using combinatorial counting

• Evaluating exhaustive search strategies:
 – Finding maximum clique
 – Determining if a graph has a 3-coloring
 – Finding a maximum matching in a graph
 – Determining if a graph has a Hamiltonian cycle or an Eulerian graph
How many ways can you
• put n items in a row?
• pick k items out of n?
• pick subsets of a set of size n?
• assign k colors to the vertices of a graph?
• match up n boys and n girls?
Technique

• To count the number of objects, design an algorithm to generate the entire set of objects. Check if each object is created exactly once (if not, you will have to do a correction later).

• The algorithm’s output can be seen as the leaves of a decision tree, and you can just count the leaves.
Putting n items in a row

Algorithm for generating all the possibilities:
• For i=1 up to n, DO
 – Pick an item from S to go in position i
 – Delete that item from the set S

Analysis: each way of completing this generates a different list.

The number of ways of performing this algorithm is $n!$
Number of subsets of a set of size n

Algorithm to generate the subsets of a set $S = \{s_1, s_2, s_3, \ldots, s_n\}$

- For $i=1$ up to n DO:
 - Decide if you will include s_i

Analysis: each subset is generated exactly once, and the number of ways to apply the algorithm is $2 \times 2 \times \ldots \times 2 = 2^n$.
k-coloring a graph

Let G have vertices \(v_1, v_2, v_3, \ldots, v_n\)

Algorithm to k-color the vertices:

• For \(i=1\) up to \(n\) DO:
 – Pick a color for vertex \(v_i\)

Analysis: each coloring is produced exactly once, and there are \(k^n\) ways of applying the algorithm.
Matching n boys and girls

Algorithm:
• Let the boys be \(B_1, B_2, \ldots, B_n \) and let the girls be \(G_1, G_2, \ldots, G_n \).
• For \(i=1 \) up to \(n \) DO
 – Pick a girl for boy \(B_i \), and remove her from the set

Analysis: there are \(n \) ways to pick the first girl, \(n-1 \) ways to pick the second girl, etc., and each way produces a different matching.

Total: \(n! \)
Picking k items out of n

Algorithm for generating all the possibilities:
• For i=1 up to k, DO
 – Pick an item from S to include in set A
 – Delete that item from the set S

The number of ways of performing this algorithm is \(n(n-1)(n-2)\ldots(n-k+1) = \frac{n!}{(n-k)!} \)

But each set A can be generated in multiple ways - and we have overcounted!
Fixing the overcounting

Each set A of k elements is obtained through $k!$ ways of running the algorithm. As an example, we can generate $\{s_1, s_5, s_3\}$ in 6 ways, depending upon the order in which we pick each of the three elements.

So the number of different sets is the number of ways of running the algorithm, divided by $k!$.

The solution is $n!/[k!(n-k)!]$
Summary (so far)

- To count the number of objects, design an algorithm to generate the entire set of objects. Check if each object is created exactly once (if not, you will have to do a correction later).

- The algorithm’s output can be seen as the leaves of a decision tree, and you can just count the leaves.
Summary

- Number of orderings of n elements is $n!$
- Number of subsets of n elements is 2^n
- Number of k-subsets of n elements is $\frac{n!}{[k!(n-k)!]}$
- Number of k-colorings of a graph is k^n
More advanced counting

• What is the number of k-subsets of a set $S = \{s_1, s_2, s_3, \ldots, s_n\}$ that do not include s_1?

• What is the number of k-subsets of a set $S = \{s_1, s_2, s_3, \ldots, s_n\}$ that do include s_1?

• What is the number of orderings of the set S in which s_1 and s_2 are not adjacent?

• What is the number of orderings of the set S in which s_1 and s_2 are adjacent?
New techniques

• Count the complement
• Divide into disjoint cases, and count each case
Example

• What is the number of k-subsets of a set $S = \{s_1, s_2, s_3, \ldots, s_n\}$ that do not include s_1?

• Solution: same as number of k-subsets of $\{s_2, s_3, \ldots, s_n\}$. So $(n-1)!/[(n-1-k)!k!]$
Example

• What is the number of k-subsets of a set $S = \{s_1, s_2, s_3, \ldots, s_n\}$ that do include s_1?

• Solution: same as the number of $(k-1)$-subsets of $\{s_2, s_3, \ldots, s_n\}$, so $(n-1)!/[(n-k)!(k-1)!]$
Example

• What is the number of orderings of the set S in which s_1 and s_2 are adjacent?

• Solution: two cases:
 – Case 1) s_1 followed by s_2
 – Case 2) s_2 followed by s_1

• Same number of each type. Easy to see that there are $(n-1)!$ of each type, so $2(n-1)!$ in total
Example

• Number of orderings of the set S in which s_1 and s_2 are not adjacent?

• This is the same as $n!-2(n-1)!$
Using combinatorial counting

• Evaluating exhaustive search strategies:
 – Finding maximum clique
 – Determining if a graph has a 3-coloring
 – Finding a maximum matching in a graph
 – Determining if a graph has a Hamiltonian cycle or an Eulerian tour