
Introduction to Graph Theory, Part I

Tandy Warnow

October 17, 2018

Graphs
Tandy Warnow

Two lectures

I Graphs - basic terminology

I Trees - perhaps not what you think!

I Framing real-world problems as graph-theoretic problems:
decision, optimization, and construction

I The basics of “NP-hardness”

Why graphs?

Graph algorithms are endemic – and many real world problems can
be solved using off-the-shelf graph algorithms software.

Learning to communicate a real world problems as a
graph-theoretic problem, and then figuring out what software to
use to solve it, will make your life simpler!

On the other hand, many graph-theoretic problems are NP-hard –
which in essence means you probably can’t solve them exactly in
polynomial time (more on this later in the course).

Knowing when a problem is NP-hard will also save you a lot of
time (because you won’t try to solve them).

Graph Terminology
A graph G = (V ,E) is an object that contains a vertex set V and
an edge set E .

We also write V (G) to denote the vertex set of G and E (G) to
denote the edge set of G .

Edges are pairs of vertices.

Most graphs we will discuss will not have directions on the edges.

However, directed graphs have directions on the edges (so an
edge u → v from u to v is not the same as an edge v → u from v
to u).

We often refer to directed graphs as digraphs.

Most graphs are finite (so |V | <∞), but sometimes graphs are
infinite.

In this class we’ll only talk about finite graphs and unless otherwise
specified the graphs will be undirected.

Notation for edges in undirected graphs

For undirected graphs, an edge between two vertices has no
direction.

There are several ways to write an edge between vertices u and v
in an undirected graph.

I tend to use (u, v) to denote the edge between u and v , and other
instructors write uv . You may well find other UIUC professors
writing edges using {u, v}!

1. uv = vu

2. (u, v) = (v , u)

3. {u, v}

Simple Graphs

A self-loop is an edge from a vertex to itself (i.e., edges (v , v)).

Parallel edges are multiple occurences of the same pair (i.e.,
(u, v) appearing more than once).

A simple graph is one that has no parallel edges and no self-loops.

Unless stated otherwise, all graphs in this class should be assumed
to be finite, simple, undirected graphs.

Terminology

I For a given graph G , if (v ,w) ∈ E , then v and w are said to
be adjacent or neighbors.

I The degree of a vertex v in a graph is the number of its
neighbors, and is denoted deg(v).

I The endpoints of an edge e = (v ,w) are v and w .

I Two edges are said to be incident if they have a common
endpoint.

I The empty graph has no vertices (and hence obviously no
edges).

I Some people say “vertices” and some people say “nodes”, and
these refer to the same thing. (The singular version of
“vertices” is “vertex”.)

Terminology, cont.

I A walk in G = (V ,E) is a sequence of vertices v1, v2, . . . , vk
s.t. (vi , vi+1) ∈ E for all i = 1, 2, . . . , k − 1; note that vertices
can be repeated.

I A path in G = (V ,E) is a path in which vertices cannot be
repeated.

I A graph is connected if you can go between any two vertices
via some path.

I A component in a graph is a maximal subgraph that is
connected.

I A cycle in a graph is a path that starts and ends at the same
node, and doesn’t repeat any other node.

I An acyclic graph is a graph that has no cycles.

I A tree is a connected acyclic graph.

Terminology, cont.

I A clique is a set of vertices that are pairwise adjacent.

I An independent set is a set of vertices where no two vertices
are adjacent.

I A proper vertex coloring is an assignment of colors to the
vertices so that no two adjacent vertices are assigned the
same color.

I A matching in a graph is a subset of the edges that share no
endpoints (equivalently, no two edges in the subset are
incident with each other).

I A dominating set is a subset A of the vertices so that every
other vertex is adjacent to at least one of the vertices in A.

I A vertex cover is a subset A of the vertices so that every
edge is incident with at least one of the vertices in A.

VERTEX COLORING

Definition: A proper vertex coloring of a graph is an assignment
of colors to the vertices so that no two adjacent vertices get the
same color. Thus, a proper vertex coloring is a function
f : V → {1, 2, . . . , k} such that f (v) = f (w)⇒ (v ,w) 6∈ E .

Decision problem:

I Input: Graph G = (V ,E) and integer k

I Question: Does G have a proper k-coloring?

Optimization problem: Find the minimum number of colors
needed to vertex-color an input graph G . (This number is called
the chromatic number.)
Construction problem: Find a vertex coloring of input graph G
that uses the minimum number of colors.

Note: Vertex Coloring is NP-complete (one of Karp’s original 21
problems)

CLIQUE

Definition: A clique in G = (V ,E) is a subset V0 of the vertices
of G such that every pair of vertices in V0 are adjacent. In other
words, V0 ⊆ V such that ∀{v ,w} ⊆ V0, (v ,w) ∈ E .

Decision problem:

I Input: Graph G = (V ,E) and integer k

I Question: Does G have a clique of size k?

Optimization problem: Find the size of the largest clique in the
input graph G .
Construction problem: Find the largest clique in the input
graph G .

NOTE: CLIQUE is NP-complete (one of Karp’s original 21
problems)

MAXIMUM INDEPENDENT SET

Definition: An independent set in a graph G = (V ,E) is a
subset of the vertices so that no two vertices in the subset are
adjacent. In other words, V0 ⊆ V such that
∀{v ,w} ⊆ V0, (v ,w) 6∈ E .

Decision problem:

I Input: Graph G = (V ,E) and integer k

I Question: Does G have an independent set of size k?

Optimization problem: Find the size of the largest independent
set in the input graph G .
Construction problem: Find the largest independent set in the
input graph G .

NOTE: MAXIMUM INDEPENDENT SET is NP-hard (easy
reduction from CLIQUE).

MAXIMUM MATCHING

Definition: A matching in a graph is a subset of the edges that
do not share any endpoints. In other words, E0 ⊆ E such that
∀(u, v) ∈ E0 and ∀(w , x) ∈ E0, if u = w then v = x .

Decision problem:

I Input: Graph G = (V ,E) and integer k

I Question: Does G have a matching of size k?

Optimization problem: Find the size of the largest matching in
the input graph G . This is called the matching number of G .
Construction problem: Find the largest matching in the input
graph G .

NOTE: MAXIMUM MATCHING can be solved in polynomial time!

VERTEX COVER

Definition: A vertex cover in a graph is a set V0 of vertices so
that every edge in the graph has at least one of its endpoints in
V0. In other words, a vertex cover is a set V0 ⊆ V so that
∀(v ,w) ∈ E , v ∈ V0 or w ∈ V0.

Decision problem:

I Input: Graph G = (V ,E) and integer k

I Question: Does G have a vertex cover of size k?

Optimization problem: Find the size of the smallest vertex
cover in the input graph G .
Construction problem: Find the smallest vertex cover in the
input graph G .

NOTE: VERTEX COVER is NP-complete (one of Karp’s original
problems)

DOMINATING SET

Definition: A dominating set in a graph in G is a subset V0 of
the vertices so that every other vertex in G is adjacent to at least
one element of V0. In other words, V0 ⊆ V such that
∀v ∈ V − V0,∃w ∈ V0 so that (v ,w) ∈ E .

Decision problem:

I Input: Graph G = (V ,E) and integer k

I Question: Does G have a dominating set of size k?

Optimization problem: Find the size of the smallest dominating
set in the input graph G .
Construction problem: Find the smallest domiating set in the
input graph G .

NOTE: Dominating Set is NP-complete.

Formulating real world problems as graph problems
Consider the following problems, all based on the set of people in
this class, and under the assumption where you know who is
friends with whom (and you assume friendship is symmetric).

1. You want to find a set of people in this class so that everyone
in the class is friends with someone in the set, and the set is
as small as possible.

2. You want to partition the set of people into subsets so that
every two people in any subset are friends, and make the
number of subsets as small as possible.

3. You want to pair people off in the class so that they will study
together. You want to have as large a number of people able
to be in study groups, but you have the following rules: study
groups must be pairs of friends and no person can be in two
study groups.

4. You want to have a party and invite as many people as you
can to it, subject to (a) they are all your friends and (b) they
all friends with each other.

Formulating real world problems as graph problems

You want to find a set of people in this class so that everyone in
the class is friends with someone in the set, and the set is as small
as possible.
Challenge: describe this as a graph problem.

Solution:
The graph G = (V ,E) is defined by:

I Let V denote all the people in the class.

I Put an edge between v and w if v and w are friends.

We are looking for the smallest V0 ⊆ V such that ∀v ∈ V \ V0,
∃w ∈ V0 such that (v ,w) ∈ E .

Formulating real world problems as graph problems

You want to find a set of people in this class so that everyone in
the class is friends with someone in the set, and the set is as small
as possible.

The graph G = (V ,E) is defined by:

I Let V denote all the people in the class.

I Put an edge between v and w if v and w are friends.

We are looking for the smallest V0 ⊆ V such that ∀v ∈ V \ V0,
∃w ∈ V0 such that (v ,w) ∈ E .

Questions:

I Does a solution always exist?

I What graph problem is this?

I How hard is it to solve this problem?

Describing a real world problem
You want to partition the set of people into subsets so that every
two people in any subset are friends, and make the number of
subsets as small as possible.

Solution: The graph G = (V ,E) is defined by

I V is the set of people in the class
I E contains (v ,w) if and only if v and w are friends.

We are looking for a partition of V into a small number of sets so
that every one of the sets is a clique (which means that all pairs of
vertices in any of the sets are adjacent).
In other words, we want to write V = V1 ∪V2 ∪ . . .∪Vk , where Vi

is a clique in G and where k is minimized.

Questions to you:

I Does a solution always exist?
I Does it have to be unique?
I What graph problem does this resemble?
I How hard is it to solve the problem?

Things to note

When you formulate a real world problem as a graph problem, you
have to:

I Describe the graph precisely. What are the vertices? What are
the edges? Do the edges have weights? Use correct
terminology (don’t be sloppy about language).

I Once the graph is defined, the problem (whether a decision
problem, optimization problem, or construction problem) is
then defined only in terms of the graph and not in terms of
the original problem.

The power in making this formulation is that there are many
algorithms (and software) for most natural graph problems, and so
you can use those programs to solve your problem.

Many graph problems are NP-hard, but sometimes you have extra
structure in your problem that allows you to solve the problem in
polynomial time. (For example, MIN VERTEX COLORING is
NP-hard, but solvable in polynomial time on trees.)

Class Exercise

You are trying to pick a jury of 12 people from a group of people.
The group has already been screened so that everyone is legally
acceptable. However, you cannot have any two people on the jury
who know each other. So the question is whether or not it’s even
possible to do this.

Question: Formulate this as a graph problem.

Cycles and circuits

I A cycle is a “closed path” (i.e., a sequence of vertices that
begins and ends at the same vertex). Thus, a cycle can be
written as v1, v2, . . . , vk , vk+1 so that (vi , vi+1) ∈ E for all
i = 1, 2, . . . , k , vk+1 = v1, and otherwise there are no
repeated vertices.

I An acyclic graph is one that has no cycles.

I A circuit in a graph G is a “closed walk” (i.e., a walk that
begins and ends at the same vertex). Thus, a circuit can be
written as a sequence of vertices v1, v2, . . . , vk , vk+1 so that
(vi , vi+1) ∈ E for all i = 1, 2, . . . , k, vk+1 = v1, and where a
vertex can appear more than once.

Terminology, cont.

I A Hamiltonian Path is a path that covers every vertex
exactly once.

I An Eulerian Walk is a walk that goes through every edge
exactly once.

Eulerian Graphs

A graph G = (V ,E) is Eulerian if it has a circuit that covers
every edge exactly once. Note – vertices can be repeated, but not
edges. Such a circuit is called an Eulerian Circuit.

Theorem: A connected simple graph G = (V ,E) is Eulerian if
and only if every vertex in G has even degree. (Note we assume G
is simple and finite.)
Proof: (Will be done later in the semester.)
Notes:

I Determining if a graph G is Eulerian can be performed in
polynomial time.

I We also are interested in graphs that have Eulerian walks, i.e.,
walks that cover every edge exactly once.

I Finding Eulerian Circuits and Eulerian Walks is used in
Assembling Genomes!

Travelling salesman

The Travelling Salesman is generally stated as an optimization
problem:

I Input: Complete graph G = (V ,E) with positive weights on
the edges

I Output: Hamilton circuit in G (circuit that visits every vertex
exactly once) and has total minimum weight

However we can formulate this as a decision problem, as follows:

I Input: Graph G = (V ,E) with positive weights on the edges,
and bound B

I Output: Does there exist a circuit in G that visits every vertex
at least once, and has total weight at most B?

And of course we could make it into a construction problem.

Note: The decision problem for Travelling Salesman is
NP-complete.

Trees: connected acyclic graphs

Thus, trees are just undirected graphs that are connected and
acyclic. Nothing more special than that.

I If a tree T = (V ,E) has n vertices, then it has n − 1 edges

I Every tree can be 2-colored.

I The maximum clique size is 2.

I Generally NP-hard problems become polynomial on trees.

Representations of graphs

We can represent a graph G = (V ,E), where V = {v1, v2, . . . , vn},
in several ways.

The two most popular ways are adjacency matrices and
adjacency lists.

Adjacency Matrices

G = (V ,E) is undirected and does not have any parallel edges
(nor weights on the edges), and V = {v1, v2, . . . , vn}.

The adjacency matrix M for G is n × n where

I M[i , j] = 1 if (vi , vj) ∈ E

I M[i , j] = 0 if (vi , vj) 6∈ E

If the graph is simple (so no self-loops), then M[i , i ,] = 0 for all
i = 1, 2, . . . , n.
For undirected graphs, M[i , j] = M[j , i]; in other words, the
adjacency matrix for an undirected graph is symmetric.

Adjacency Matrices

Extensions:

I If G has non-zero weights on the edges, then we could let Mi ,j

denote the weight of the edge (vi , vj).

I For directed graphs, we distinguish between edges from vi to
vj and from vj to vi ; hence, we can get asymmetric matrices.

Note that this representation inherently requires Θ(n2) space, even
for graphs that don’t have many edges.

Given an adjacency matrix, checking if an edge (vi , vj) takes O(1)
time.

See https://en.wikipedia.org/wiki/Adjacency matrix.

Adjacency List

In an adjacency list, for each vertex in the graph, you have a list of
its neighbors.

If the graph G = (V ,E) is undirected, then
List(x) = {w ∈ V |(x ,w) ∈ E}.

If the graph G = (V ,E) is directed, then
List(x) = {w ∈ V |x → w ∈ E}.

Note that an adjacency list requires Θ(m) space, where m is the
number of edges.

This can be much more space efficient than an adjacency matrix
for sparse graphs, but some operations take more time (e.g.,
checking if an edge is present). See

https://en.wikipedia.org/wiki/Adjacency list.

Practice problems

You should be able to do the following tasks:

I Know various graph-theoretic terms (tree, degree, path, cycle,
clique, matching, etc.) and be able to answer questions based
on these terms

I Define decision, optimization, and construction problems
defined in today’s lecture

I Find solutions to these decision problems on small graphs
(with at most 6 vertices)

I Formulate a real world problem as a graph problem

